Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)
Để \(A,B\ne\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)
Kết hợp ĐK \(2< m< 8\)
\(\Rightarrow m\in\left(2;8\right)\)
a ) \mathbb{R} \backslash (-3; \, 1]R\(−3;1]=(-∞;-3]∪(1;+∞)
b) (-\infty; \, 1) \backslash [-2; \, 0](−∞;1)\[−2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)∪(0;1)
ˆABC=90°+15°30'=105°30'
Xét tam giác ABC có ˆCAB =60°, ˆABC=105°30' ta có:
ˆCAB+ˆABC+ˆACB=180° (định lí tổng ba góc trong tam giác)
⇒ˆACB=180°−ˆCAB−ˆABC
⇒ˆACB=180°−60°−105°30'=14°30'.
Áp dụng định lí sin trong tam giác ABC, ta có: ACsinˆABC=ABsinˆACB
⇒AC=AB.sinˆABCsinˆACB=70.sin105°30'sin14°30'≈269,4(m)
a) \(B\subset A\)
\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)
\(\Rightarrow2m-1\le-4< 5\le m+3\)
\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)
\(\Rightarrow m\in\varnothing\)
b) \(A\text{∩ }B=\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)
Vậy \(m< -7;m>3\)
a: \(A=cos^4x+cos^2x\cdot sin^2x\)
\(=cos^2x\left(cos^2x+sin^2x\right)\)
\(=cos^2x\cdot1=cos^2x\)
b:
\(AN=ND=\dfrac{AD}{2}\)
\(CM=MB=\dfrac{CB}{2}\)
mà AD=CB
nên AN=ND=CM=MB
Xét tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
=>\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AC}\)
=>\(\overrightarrow{AN}=\overrightarrow{AC}-\overrightarrow{AM}\)
ABCD là hình bình hành
=>\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
\(\overrightarrow{AB}+\overrightarrow{AD}-\overrightarrow{AM}\)
\(=\overrightarrow{AC}-\overrightarrow{AM}\)
\(=\overrightarrow{AN}\)
cảm ơn nhiều nha