Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
Phương trình hoành độ giao điểm là:
\(x^2-2x+m^2=0\)
Để (P) cắt (d) tại hai điểm nằm về hai phía trục tung thì \(m^2< 0\)
hay \(m\in\varnothing\)
\(\Delta'=\left(m-1\right)^2-\left(2m-4\right)=\left(m-2\right)^2+1>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-4\end{matrix}\right.\) (1)
a. Pt có 2 nghiệm đối nhau khi:
\(x_1+x_2=0\Leftrightarrow2m-2=0\Rightarrow m=1\)
b. Trừ vế cho vế của (1) ta được:
\(x_1+x_2-x_1x_2=2m-2-\left(2m-4\right)\)
\(\Leftrightarrow x_1+x_2-x_1x_2=2\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\z+x=2b\end{matrix}\right.\)
\(\Leftrightarrow P=\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\\ \Leftrightarrow P=\dfrac{2y}{x}+\dfrac{2z}{x}+\dfrac{9x}{2y}+\dfrac{9z}{2y}+\dfrac{8x}{z}+\dfrac{8y}{z}\\ \Leftrightarrow P=\left(\dfrac{2y}{x}+\dfrac{9x}{2y}\right)+\left(\dfrac{2z}{x}+\dfrac{8x}{z}\right)+\left(\dfrac{9z}{2y}+\dfrac{8y}{z}\right)\\ \Leftrightarrow P\ge2\sqrt{\dfrac{18xy}{2xy}}+2\sqrt{\dfrac{16xz}{xz}}+2\sqrt{\dfrac{72yz}{2yz}}\\ \Leftrightarrow P\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}=26\)