K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

3n-1\(⋮\)n+1

3(n+1)\(⋮\)n+1

3n-1+3(n+1)\(⋮\)n+1

3n-1+3n-3\(⋮\)n+1

4\(⋮\)n+1

\(\Rightarrow\)n+1={1;2;4}

\(\Rightarrow\)n={0;1;3}

2 tháng 11 2016

Thêm vào cuối

n={0;1;3}

20 tháng 11 2019

a) Ta có:

\(n^2+3n+2\)

\(=n^2+n+2n+2\)

\(=n\left(n+1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n+2\right)\)

Vì \(n+1⋮n+1\)

\(\Rightarrow n+2⋮n+1\)

Ta có:

\(n+2=n+1+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)

Vậy \(n=0\)

4 tháng 10 2016

a) n + 11 chia hết cho n +2

n + 11 chia hết cho n + 2

Ta luôn có n+ 2 chia hết cho n+ 2

=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)

=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)

=> 9 chia hết cho (n+ 2)

=> Ta có bảng sau:

n+ 2-1-3-9139
n-3-5-11-118

 

Vì n thuộc N => n \(\in\) { 1; 8}

b) 2n - 4 chia hết cho n- 1

Ta có: (n -1 ) luôn chia hết cho (n- 1)

=> 2( n-1)\(⋮\) (n-1)

=>(2n- 2) chia hêt cho (n- 1)

=> (2n-4 )- (2n-2) chia hết cho (n-1 )

=> -2 chia hết cho ( n-1)

=> Ta có bảng sau:

n-1-11-22
n02-13

 

Vì n thuộc N nên n thuộc {0; 2; 3}

 

 

2 tháng 2 2018

hơi dài đấy 3

a,

2n+1\(⋮\)2n-3

2n-3+4\(⋮\)2n-3

\(_{\Rightarrow}\)4\(⋮\)2n-3

2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)

2n-3124-1-2-4
2n45721-1
n2  1  

vậy n\(\in\)(2;1)

b;

3n+2\(⋮\)3n-4

3n-4+6\(⋮\)3n-4

=>6\(⋮\)3n-4

3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)

3n-41236-1-2-3-6
3n56710321-2
n 3 5 1 -1

vậy n\(\in\)(3;5;-1;1)

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 1

Tự làm đi, chắc là BTVN được giao hả, phải luyện


3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm