K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

a.

\(y'=cos\left(3x+\dfrac{\pi}{2}\right).\left(3x+\dfrac{\pi}{2}\right)'=3cos\left(3x+\dfrac{\pi}{2}\right)=-3sin3x\)

b.

\(y'=-sin\left(3x-\dfrac{\pi}{6}\right).\left(3x-\dfrac{\pi}{6}\right)'=-3sin\left(3x-\dfrac{\pi}{6}\right)\)

10 tháng 5 2021

a,\(y=sin\left(3x+\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow\left(3x+\dfrac{\pi}{2}\right)'cos\left(3x+\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow3cos\left(3x+\dfrac{\pi}{2}\right)\)

b,\(y=cos\left(3x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow-\left(3x-\dfrac{\pi}{6}\right)'sin\left(3x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow-3sin\left(3x-\dfrac{\pi}{6}\right)\)

17 tháng 6 2020

chịu anh lớp 11 ạ

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

\(f(x)=\sin x\Rightarrow f'(x)=\cos x; g(x)=\cot x\Rightarrow g'(x)=-\frac{1}{\sin ^2x}\)

\(\Rightarrow \frac{f'(\frac{\pi}{4})}{g'(\frac{\pi}{4})}=-\cos (\frac{\pi}{4})\sin ^2(\frac{\pi}{4})=\frac{-\sqrt{2}}{4}\)

7 tháng 3 2022

Câu 2 á mn

NV
8 tháng 3 2022

\(IM=\dfrac{1}{4}IB\Rightarrow IM=\dfrac{1}{5}BM\Rightarrow\overrightarrow{MI}=\dfrac{1}{5}\overrightarrow{MB}=-\dfrac{1}{10}\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

\(\Rightarrow\overrightarrow{DI}=\overrightarrow{DM}+\overrightarrow{MI}=\dfrac{1}{2}\overrightarrow{DC}-\dfrac{1}{10}\left(\overrightarrow{BC}+\overrightarrow{BD}\right)=\dfrac{1}{2}\overrightarrow{DB}+\dfrac{1}{2}\overrightarrow{BC}-\dfrac{1}{10}\overrightarrow{BC}-\dfrac{1}{10}\overrightarrow{BD}\)

\(\Rightarrow\overrightarrow{DI}=\dfrac{2}{5}\overrightarrow{BC}-\dfrac{3}{5}\overrightarrow{BD}\)

\(\overrightarrow{DJ}=\overrightarrow{DC}+\overrightarrow{CJ}=\overrightarrow{DB}+\overrightarrow{BC}+x.\overrightarrow{CB}=\left(1-x\right)\overrightarrow{BC}-\overrightarrow{BD}\)

D; I; J thẳng hàng \(\Rightarrow\dfrac{1-x}{\dfrac{2}{5}}=\dfrac{1}{\dfrac{3}{5}}\Rightarrow x=\dfrac{1}{3}\)

\(\Rightarrow CJ=\dfrac{1}{3}CB\Rightarrow BJ=\dfrac{2}{3}BC\Rightarrow\dfrac{BJ}{BC}=\dfrac{2}{3}\)

Gọi N là trung điểm AD \(\Rightarrow\dfrac{BG}{BN}=\dfrac{2}{3}\) (theo t/c trọng tâm)

\(\Rightarrow\dfrac{BJ}{BC}=\dfrac{BG}{BN}\Rightarrow JG||CN\)

\(\Rightarrow\widehat{\left(JG;CD\right)}=\widehat{\left(CN;CD\right)}=\widehat{NCD}=30^0\) (do tam giác ACD đều)

NV
11 tháng 4 2022

\(f'\left(x\right)=x^2+2x\)

a.

\(f'\left(-3\right)=3\) ; \(f\left(-3\right)=-2\)

Phương trình tiếp tuyến:

\(y=3\left(x+3\right)-2\Leftrightarrow y=3x+7\)

b.

Gọi \(x_0\) là hoành độ tiếp điểm, do hệ số góc tiếp tuyến bằng 3

\(\Rightarrow f'\left(x_0\right)=3\Rightarrow x_0^2+2x_0=3\Rightarrow x_0^2+2x_0-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=1\Rightarrow y_0=-\dfrac{2}{3}\\x_0=-3\Rightarrow y_0=-2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=3\left(x-1\right)-\dfrac{2}{3}=3x-\dfrac{11}{3}\\y=3\left(x+3\right)-2=3x+7\end{matrix}\right.\)

c. Tiếp tuyến song song (d) nên có hệ số góc bằng 8

Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow x_0^2+2x_0=8\)

\(\Rightarrow\left[{}\begin{matrix}x_0=2\Rightarrow y_0=\dfrac{14}{3}\\x_0=-4\Rightarrow y_0=-\dfrac{22}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=8\left(x-2\right)+\dfrac{14}{3}=...\\y=8\left(x+4\right)-\dfrac{22}{3}=...\end{matrix}\right.\)

31 tháng 5 2021

a) `f^((n)) (x) = ((x+10)^6)^((n)) = 0 (n>6)`

b) `f^((n)) (x) = (cosx)^((n)) = cos(x+ (nπ)/2)`

c) `f^((n)) (x) = (sinx)^((n)) = sin(x + (nπ)/2)`

 

NV
14 tháng 7 2021

2.

\(\Leftrightarrow cos2x-cos8x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow2sin5x.sin3x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow sin3x\left(2sin5x-1\right)-cos5x\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos5x\right)\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=sin3x=cos\left(\dfrac{\pi}{2}-3x\right)\\sin5x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{2}-3x+k2\pi\\5x=3x-\dfrac{\pi}{2}+k2\pi\\5x=\dfrac{\pi}{6}+k2\pi\\5x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
14 tháng 7 2021

3.

\(\Leftrightarrow1+sinx=cosx-cos3x+2sinx.cosx+1-2sin^2x\)

\(\Leftrightarrow sinx=2sin2x.sinx+2sinx.cosx-2sin^2x\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\1=2sin2x+2cosx-2sinx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4sinx.cosx+2cosx-2sinx-1=0\)

\(\Leftrightarrow2cosx\left(2sinx+1\right)-\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2cosx+1\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

4 tháng 7 2021

ĐK: `x \ne kπ`

`cot(x-π/4)+cot(π/2-x)=0`

`<=>cot(x-π/4)=-cot(π/2-x)`

`<=>cot(x-π/4)=cot(x-π/2)`

`<=> x-π/4=x-π/2+kπ`

`<=>0x=-π/4+kπ` (VN)

Vậy PTVN.

1 tháng 8 2021

hahihihihi