K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

a: ΔAHB vuông tại H

=>\(AB^2=BH^2+AH^2\)

=>\(AH^2+5,4^2=9^2\)

=>\(AH^2=9^2-5,4^2=51,84\)

=>AH=7,2(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC\cdot5,4=9^2=81\)

=>BC=15(cm)

BH+CH=BC

=>CH+5,4=15

=>CH=15-5,4=9,6(cm)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=9,6^2+7,2^2=144\)

=>AC=12(cm)

b:

Sửa đề: \(AH^3=BC\cdot BE\cdot CF\)

Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\) và \(CF\cdot CA=CH^2\)

=>\(CF=\dfrac{CH^2}{CA}\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=HB\cdot HC\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(CF\cdot CA=CH^2;AF\cdot AC=AH^2\)

=>\(CF=\dfrac{CH^2}{CA}\)

\(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=\dfrac{BC}{AB\cdot AC}\cdot BH^2\cdot CH^2\)

\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4\)

\(=\dfrac{AH^4}{AH}=AH^3\)

c: \(AE\cdot AB=AH^2\)

=>\(AE\cdot9=7,2^2\)

=>\(AE=\dfrac{7.2^2}{9}=5,76\left(cm\right)\)

\(AE\cdot AB=AH^2\)

\(AF\cdot AC=AH^2\)

Do đó: \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\dfrac{S_{AEF}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=\left(\dfrac{5.76}{12}\right)^2=\dfrac{144}{625}\)

=>\(S_{AEF}=\dfrac{144}{625}\cdot S_{ACB}=\dfrac{144}{625}\cdot\dfrac{1}{2}\cdot12\cdot9=12,4416\left(cm^2\right)\)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

31 tháng 10 2021

 b: Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(1\right)\)

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(2\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:

$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$

$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)

Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$

$\Rightarrow EF=HA$

$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:

$AH^2=HB.HC(3)$

Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ: