K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

\(tana=\sqrt{3}\)

=>\(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+3=4\)

=>\(cos^2a=\dfrac{1}{4}\)

=>\(cosa=\dfrac{1}{2}\)

=>\(sina=\dfrac{\sqrt{3}}{2}\)

\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)

\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

15 tháng 7 2017

ta co \(sin^2a+cos^2a=1\Rightarrow cosa=0.36\)

\(\frac{sina}{cosa}=tana\Rightarrow tana=\frac{20}{9}\)

\(tana\cdot cotga=1\Rightarrow cotga=\frac{9}{20}\)

câu b tương tự nha cau c \(\frac{sina+cosa}{sina-cosa}=\) bn

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
22 tháng 8 2020

\(1+tan^2a=\frac{1}{cos^2a}\)       

\(1+3^2=\frac{1}{cos^2a}\) 

\(10=\frac{1}{cos^2a}\)  

\(cos^2a=\frac{1}{10}\)          

\(cosa=\pm\sqrt{\frac{1}{10}}\) 

\(sin^2a+cos^2a=1\)   

\(sin^2a+\frac{1}{10}=1\)   

\(sin^2a=\frac{9}{10}\)   

\(sina=+\sqrt{\frac{9}{10}}\) 

Vì tan dương nên có hai trường hợp : 

TH1 : cả sin và cos cùng dương : 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\) 

\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\) 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)    

\(=\frac{3}{8}\)   

TH2 : cả sin và cos cùng âm 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)                   

\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)                 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)      

\(=\frac{3}{8}\)            

19 tháng 8 2021

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)