Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Tử số là A ta có
\(2A=2+2^2+2^3+2^4+..+2^{2016}\)
\(A=2A-A=2^{2016}-1\)
\(\Rightarrow S=\frac{2^{2016}-1}{1-2^{2016}}=\frac{-\left(1-2^{2016}\right)}{1-2^{2016}}=-1\)
\(S=\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
\(\Rightarrow2S=\frac{2\left(1+2+2^2+2^3+...+2^{2015}\right)}{1-2^{2016}}\)
\(\Rightarrow2S=\frac{2+2^2+2^3+2^4+...+2^{2016}}{1-2^{2016}}\)
\(\Rightarrow2S-S=\frac{2+2^2+2^3+2^4+...+2^{2016}}{1-2^{2016}}-\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
\(\Rightarrow S=\frac{2^{2016}-1}{1-2^{2016}}=-1\)
Khi nào có bài khó thì cứ đăng lên nhé, mình sẽ giúp ^.^
\(\Rightarrow5^2\cdot5^{x+3}=5^6\\ \Rightarrow5^{x+3}=5^4\\ \Rightarrow x+3=4\\ \Rightarrow x=1\)
Ta có :
\(M=4^2+4^4+4^6+...+4^{58}+4^{60}\)
\(=\left(4^2+4^4\right)+\left(4^6+4^8\right)+...+\left(4^{58}+4^{60}\right)\)
\(=4^2\left(1+4^2\right)+4^6\left(1+4^2\right)+...+4^{58}\left(1+4^2\right)\)
\(=\left(1+16\right)\left(4^2+4^6+...+4^{58}\right)\)
\(=\left(4^2+4^6+...+4^{58}\right).17⋮17\)
\(\Rightarrow M⋮17\)(đpcm)
Chúc bn hc giỏi!
M = 4^2 + 4^4 + 4^6 + 4^8 +... +4^58+4^60
= (4^2+4^4)+...+(4^58+4^60)
=4^2.(1+4^2)+....+4^58.(1+4^2)
=4^2.17+....+4^58.17
= 17.(4^2+...+4^58)
Chia hết cho 17
ĐPCM
có j không hiểu ib hỏi mình nhé
\(\Rightarrow\)x+2\(\in\)Ư(9)
Ư(9)={\(\pm1\); \(\pm3\); \(\pm9\)}
\(\Rightarrow\)x+2\(\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow\)x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
Vậy x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
n.(n+2).(n+7)
=n.n.(2+7)
=2n.9
Vì \(9⋮3\Rightarrow2n.9⋮3\)
CHÚC BẠN HỌC TỐT !!!
\(B=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)
\(B=\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)
\(B=-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)
\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)
\(B=-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)
\(B=-\left(\frac{1}{10}.\frac{11}{2}\right)\)
\(B=\frac{-11}{20}< \frac{-11}{21}\)
Vậy \(B< \frac{-11}{21}\)
Bài 2:
n) Ta có: \(N=\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2014\cdot2016}\)
\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2014\cdot2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(=2\cdot\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)
\(=2\cdot\dfrac{1007}{2016}=\dfrac{1007}{1008}\)
o) Ta có: \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+\dfrac{1}{9\cdot12}+...+\dfrac{1}{30\cdot33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
a) Ta có: \(\left(6\dfrac{4}{9}+3\dfrac{7}{11}\right)-4\dfrac{4}{9}\)
\(=\dfrac{58}{9}+\dfrac{40}{11}-\dfrac{40}{9}\)
\(=2+\dfrac{40}{11}=\dfrac{62}{11}\)
Bài 2:
b) Ta có: \(10\dfrac{1}{5}-5\dfrac{1}{2}\cdot\dfrac{60}{11}+3:15\%\)
\(=\dfrac{51}{5}-\dfrac{11}{2}\cdot\dfrac{60}{11}+3:\dfrac{3}{20}\)
\(=\dfrac{51}{5}-30+20\)
\(=\dfrac{51}{5}-10=\dfrac{1}{5}\)
c) Ta có: \(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{97\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)