Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=4\\2x=-1\\5x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{cases}}}\)
Vậy ...
Ối ối nhầm rồi :(
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\Leftrightarrow x=\frac{4}{3}\\2x=-1\Leftrightarrow x=-\frac{1}{2}\\5x=2\Leftrightarrow x=\frac{2}{5}\end{cases}}}\)
Vậy ... là nghiệm của pt
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
(2x^2-3x+1)(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2
<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2
<=> (2x^2+5x+1 - 4x)^2=25x^2
<=> (2x^2+x+1)^2=25x^2
<=> (2x^2+x+1)^2 - 25x^2 =0
<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0
<=>(2x^2-4x+1)(2x^2+6x+1)=0
<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0
<=> x^2-2x +1/2 =0
<=> (x^2-2x+1) -1/2 =0
<=> (x-1)^2 =1/2 => x-1 =căn(1/2) => x=căn(1/2)+1
=> x-1=-(căn(1/2)) => x=- (căn(1/2)) +1
Hoặc 2x^2 +6x +1=0
<=> x^2 + 3x +1/2 =0
<=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0
<=> (x+1.5)^2 - 7/4 =0
<=> (x+1.5)^2 = 7/4 => x+1.5 = căn(7/4) => x=căn(7/4) -1.5
=> x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5
nhớ thanks bạn (+_+)
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)
\(\Leftrightarrow\)\(6x^2-13x+6=6x^2+43x+7\)
\(\Leftrightarrow\)\(-56x=1\)
\(\Leftrightarrow\)\(x=\frac{-1}{56}\)
\(\Rightarrow\)\(S=\left\{-\frac{1}{56}\right\}\)
Study well !
4/(3x - 2) - 7/(x + 1) = 0
<=> 4(x + 1) - 7(3x - 2) = 0
<=> 4x + 4 - 21x + 14 = 0
<=> -17x + 18 = 0
<=> -17x = 0 - 18
<=> -17x = -18
<=> x = 18/17
Ta có : \(\frac{4}{3x-2}-\frac{7}{x+1}=0\)
\(\Leftrightarrow\frac{4}{3x-2}-\frac{7}{x-1}=0,x\ne\frac{2}{3},x\ne-1\)
\(\Leftrightarrow\frac{4.\left(x+1\right)-7.\left(3x-2\right)}{\left(3x-2\right).\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{4x+4-21x+14}{\left(3x-2\right).\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{-17x+18}{\left(3x-2\right).\left(x+1\right)=0}\)
\(\Leftrightarrow-17.x+18=0\)
\(\Leftrightarrow-17.x=-18\)
\(\Leftrightarrow x=\frac{18}{17},x\ne\frac{2}{3},x\ne-1\)
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
\(5x-\frac{1}{3x}+2=5x-\frac{7}{3}x-1\)
\(\Rightarrow5x-\frac{1}{3x}+2-5x+\frac{7}{3x}+1=0\)
\(\Rightarrow\frac{6}{3x}+3=0\)
\(\Rightarrow\frac{2}{x}+3=0\)
\(\Rightarrow\frac{2}{x}=-3\)
\(\Rightarrow x=\frac{-2}{3}\)
\(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\) (1)
ĐKXĐ :
\(\hept{\begin{cases}3x+2\ne0\\3x-1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}3x\ne-2\\3x\ne1\end{cases}\Rightarrow\hept{\begin{cases}x\ne\frac{-2}{3}\\x\ne\frac{1}{3}\end{cases}}}\)
Từ (1) ta có :
\(\Rightarrow\left(5x-1\right).\left(3x-1\right)=\left(3x+2\right).\left(5x-7\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow15x^2-15x^2-8x+11x=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-15:3\)
\(\Leftrightarrow x=-5.\)( t/m ĐKXĐ )
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\).