Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: \(\text{Δ}=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=-8m+32\)
Để phương trình có hai nghiệm thì -8m+32>=0
=>m<=4
Để phương trình có hai nghiệm cùng âm thì:
\(\left\{{}\begin{matrix}m< =4\\\dfrac{-\left(-6\right)}{1}< 0\\2m+1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
h: \(\left\{{}\begin{matrix}2x_1-x_2=15\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=7\\x_2=-1\end{matrix}\right.\)
x1*x2=2m+1
=>2m+1=-7
=>2m=-8
=>m=-4
i: \(x_1^2+x_2^2=5\)
=>(x1+x2)^2-2x1x2=5
=>6^2-2(2m+1)=5
=>36-4m-2=5
=>34-4m=5
=>4m=29
=>m=29/4(loại)
j: \(x_1^3+x_2^3=5\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=5\)
=>\(6^3-3\cdot6\cdot\left(2m+1\right)=5\)
=>216-18(2m+1)=5
=>18(2m+1)=211
=>2m+1=211/18
=>2m=193/18
=>m=193/36(loại)
A=P^2-P
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x+2\sqrt{x}+1-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)^2}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-2\right)^2}>=0\)
=>P^2>=P
a:
b: PTHĐGĐ là:
x^2=-2x-1
=>x^2+2x+1=0
=>(x+1)^2=0
=>x=-1
Khi x=-1 thì y=(-1)^2=1
1: \(A=\dfrac{\left(x+1\right)^3}{\left(x+1\right)^2}=x+1\)
\(B=\dfrac{\left(x+1\right)\cdot\left(x^2-x+1\right)}{x+1}=x^2-x+1\)
2: A=B
=>x^2-x+1=x+1
=>x^2-2x=0
=>x=0 hoặc x=2
Hình vẽ nhỏ quá. Bạn nên gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
Bài 35:
b) ĐKXĐ: \(x\notin\left\{5;2\right\}\)
Ta có: \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3-\dfrac{6}{2-x}=0\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3+\dfrac{6}{x-2}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{3\left(x-5\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{6\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\)
Suy ra: \(x^2-4+3\left(x^2-7x+10\right)+6x-30=0\)
\(\Leftrightarrow x^2-4+3x^2-21x+30+6x-30=0\)
\(\Leftrightarrow4x^2-15x-4=0\)
\(\Leftrightarrow4x^2-16x+x-4=0\)
\(\Leftrightarrow4x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{4;-\dfrac{1}{4}\right\}\)
Bài 36:
a) Ta có: \(\left(3x^2-5x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(3x^2-5x+1\right)=0\)
mà \(3x^2-5x+1>0\forall x\)
nên (x-2)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: S={2;-2}
`1)\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}`
`2)`
`a)\sqrt{x^2-4x+4}=1`
`<=>\sqrt(x-2)^2}=1`
`<=>|x-2|=1`
`<=>[(x-2=1),(x-2=-1):}<=>[(x=3),(x=1):}`
`b)\sqrt{x^2-3x}-\sqrt{x-3}=0` `ĐK: x >= 3`
`<=>\sqrt{x}\sqrt{x-3}-\sqrt{x-3}=0`
`<=>\sqrt{x-3}(\sqrt{x}-1)=0`
`<=>[(\sqrt{x-3}=0),(\sqrt{x}-1=0):}`
`<=>[(x-3=0),(\sqrt{x}=1):}<=>[(x=3(t//m)),(x=1(ko t//m)):}`
b14:
\(a,P=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{1}{\sqrt{x}-1}\)
sao ko gọn zị :v
\(M=\frac{3\left(\sqrt{x}+3\right)-8}{\sqrt{x}+3}=3-\frac{8}{\sqrt{x}+3}\)
Để M nguyên thì \(\frac{8}{\sqrt{x}+3}\)nguyên hay \(\sqrt{x}+3\inƯ\left(8\right)\)
bạn lập bảng xét nhé ;)