Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vô lí, vì nếu thay n=9 thì kết quả của 1+2+3+...+9=45
Và 45 không chia hết 11
a) Để đường thẳng (d) đi qua gốc tạo đô \(\Leftrightarrow\hept{\begin{cases}m=0\\m-2\ne0\end{cases}}\)\(\Leftrightarrow m=0\)
b) Đường thẳng (d) đi qua điểm A(2;5) nên ta có:
\(5=2\left(m-2\right)+m\)
\(\Leftrightarrow2m-4+m=5\)
\(\Leftrightarrow3m=9\Leftrightarrow m=3\)
g: \(\text{Δ}=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=-8m+32\)
Để phương trình có hai nghiệm thì -8m+32>=0
=>m<=4
Để phương trình có hai nghiệm cùng âm thì:
\(\left\{{}\begin{matrix}m< =4\\\dfrac{-\left(-6\right)}{1}< 0\\2m+1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
h: \(\left\{{}\begin{matrix}2x_1-x_2=15\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=7\\x_2=-1\end{matrix}\right.\)
x1*x2=2m+1
=>2m+1=-7
=>2m=-8
=>m=-4
i: \(x_1^2+x_2^2=5\)
=>(x1+x2)^2-2x1x2=5
=>6^2-2(2m+1)=5
=>36-4m-2=5
=>34-4m=5
=>4m=29
=>m=29/4(loại)
j: \(x_1^3+x_2^3=5\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=5\)
=>\(6^3-3\cdot6\cdot\left(2m+1\right)=5\)
=>216-18(2m+1)=5
=>18(2m+1)=211
=>2m+1=211/18
=>2m=193/18
=>m=193/36(loại)
A=P^2-P
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x+2\sqrt{x}+1-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)^2}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-2\right)^2}>=0\)
=>P^2>=P
b14:
\(a,P=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{1}{\sqrt{x}-1}\)
sao ko gọn zị :v
\(M=\frac{3\left(\sqrt{x}+3\right)-8}{\sqrt{x}+3}=3-\frac{8}{\sqrt{x}+3}\)
Để M nguyên thì \(\frac{8}{\sqrt{x}+3}\)nguyên hay \(\sqrt{x}+3\inƯ\left(8\right)\)
bạn lập bảng xét nhé ;)