K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

\(sin\alpha=sin\left(180-\alpha\right)=\dfrac{3}{5}\Rightarrow cos\left(180-a\right)=\sqrt{1-sin^2\alpha}=\dfrac{4}{5}\Rightarrow cos\alpha=-\dfrac{4}{5}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{5}}{-\dfrac{4}{5}}=-\dfrac{3}{4}\Rightarrow cot\alpha=-\dfrac{4}{3}\)

\(\Rightarrow A=\dfrac{3.\dfrac{3}{5}-\dfrac{4}{5}}{-\dfrac{3}{4}+\dfrac{4}{3}}=\dfrac{12}{7}\)

NV
6 tháng 4 2021

Đường thẳng BC vuông góc AH nên nhận (1;-3) là 1 vtpt

Phương trình BC: \(1\left(x-2\right)-3\left(y+7\right)=0\Leftrightarrow x-3y-23=0\)

Do M thuộc CM nên tọa độ có dạng \(M\left(-2m-7;m\right)\)

M là trung điểm AB \(\Rightarrow A\left(-4m-16;2m+7\right)\)

Mà A thuộc AH nên:

\(3\left(-4m-16\right)+\left(2m+7\right)+11=0\Rightarrow m=-3\Rightarrow A\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(6;-8\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt \(\Rightarrow\) pt AB là...

C là giao điểm BC và CM nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+2y+7=0\\x-3y-23=0\end{matrix}\right.\) \(\Rightarrow C\left(5;-6\right)\Rightarrow\overrightarrow{BC}=...\Rightarrow\) phương trình BC

2 tháng 6 2021

Hình như là giải phương trình đúng không nhỉ>>

ĐK: \(x\ne k\pi;x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

\(tan\left(2x+\dfrac{\pi}{6}\right)=cotx\)

\(\Leftrightarrow tan\left(2x+\dfrac{\pi}{6}\right)=tan\left(\dfrac{\pi}{2}-x\right)\)

\(\Leftrightarrow2x+\dfrac{\pi}{6}=\dfrac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{9}+\dfrac{k\pi}{3}\left(tm\right)\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{9}+\dfrac{k\pi}{3}\)

6 tháng 9 2016

Mk gợi ý qua cho bn r bn tự lm tiếp nháhaha

1)ĐK:\(x\in\left[-2;2\right]\)

Dễ thấy :y=0 không là nghiệm của hệ

Chia cả 2 vế của pt(2) cho \(y^3\)ta đc:

\(\left(5-x\right)\sqrt{2-x}=\frac{8}{y^3}+\frac{6}{y}\)\(\Leftrightarrow\left(2-x\right)\sqrt{2-x}+3\sqrt{2-x}=\left(\frac{2}{y}\right)^3+3\left(\frac{2}{y}\right)\)

Xét hàm số:\(f\left(t\right)=t^3+3t\)

\(f'\left(t\right)=3t^2+3>0\)\(\Rightarrow\)hàm số liên tục và đồng biến trên R

\(\Rightarrow\sqrt{2-x}=\frac{2}{y}\)\(\Rightarrow y=\frac{2}{\sqrt{2-x}}\)

Thay vào pt(1) ta đc:

\(6\sqrt{2+x}+8\sqrt{4-x^2}=20-6x+12\sqrt{2-x}\)

\(\Leftrightarrow x=\frac{6}{5}\Rightarrow y=\sqrt{5}\)(t/m)

KL:...

8 tháng 9 2016

Mình cảm ơn :)

Câu 7: B

Câu 8: C

Câu 10: A

Cách làm 😥😥

29 tháng 7 2016

.

31 tháng 7 2016

Bình phương là nhanh nhất

kết wa : -x4-6x3-10x2-2x+3=0 nhớ loại nghiệm