K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:

a.

$27A=x^3-9x^2+162x-27=(x-3)^3+135x$

$=(303-3)^3+135.303=27040905$

$A=1001515$

b.

$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$

$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$

c.

$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$

 

\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)

\(=\left(2\cdot24.5+1\right)^3=50^3=125000\)

15 tháng 8 2021

mình cảm ơn ạ 

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

3 tháng 7 2021

Thay x=-8 và y=6 cào C ta được:

\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)

3 tháng 7 2021

\(C=x^2\left(\dfrac{x}{2}+\dfrac{y}{4}\right)+y^2\left(\dfrac{x}{6}+\dfrac{y}{27}\right)=\left(-8\right)^2\left(-\dfrac{8}{2}+\dfrac{6}{4}\right)+6^2\left(-\dfrac{8}{6}+\dfrac{6}{27}\right)=-200\)

18 tháng 9 2023

a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)

b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)

c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)

\(=ax\left(x-a\right)\)

19 tháng 7 2016

a, \(A=x^2-y^2-4x\)

\(=\left(x^2-y^2\right)-4x\)

\(=\left(x+y\right)\left(x-y\right)-4x\)

\(=2\left(x-y\right)-2.2x\)

\(=2\left(x-y-2x\right)\)

\(=2\left(-x-y\right)\)

\(=2\left[-\left(x+y\right)\right]\)

\(=-2\left(x+y\right)\)

\(=-2.2=-4\)

Vậy \(A=-4\)

b, \(B=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\)

\(=4^2-4.4-3\)

\(=-3\)

Vậy \(B=-3\)

c, Phần này hình như đề bài sai, bạn xem lại đề hộ mk cái nhé ;)

19 tháng 7 2016

A =(x+y)(x-y) -4x = 2(x-y) -4x = 2x -2y - 4x = - 2(x+y) = -4

.............