K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2x+3}{4}>\frac{4-x}{-3}\)

\(\frac{3\left(2x+3\right)}{12}>\frac{-4\left(4-x\right)}{12}\)

\(3\left(2x+3\right)>-4\left(4-x\right)\)

\(6x+9>-16+4x\)

\(6x+9-4x>-16\)

\(2x+9>-16\)

\(2x>-25\Leftrightarrow x>-\frac{25}{2}\)

13 tháng 3 2022

gọi 2021-x = a

2023-x=b

2x-4044=c

ta có a + b + c=2021-x+2023-x+2x-4044=0

suy ra a + b = -c

suy ra (a+b)^3 =-c^3

ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc 

ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0

=> 3(2021-x)(2023-x)(2x-4044)=0

=> th 1 x = 2021,  th 2 x = 2023; th3 x = 2022

21 tháng 10 2021

a)

(x+4)(3x-5) = 0

=> x + 4 = 0 hoặc 3x-5 = 0

     x = -4                 x = 5/3

b)

  2x2 + 7x + 3 = 0

  2x2 + 6x + x + 3= 0

  (2x+1)(x+3) = 0

=> 2x+1 = 0 hoặc x + 3 = 0

    x = -1/2              x = -3

31 tháng 8 2021

\(2x\left(x-3\right)=x^2-3x\)

\(\Rightarrow2x\left(x-3\right)=x\left(x-3\right)\)

\(\Rightarrow2x=x\)

\(\Rightarrow x=0\)

31 tháng 8 2021

\(2x.\left(x-3\right)=x^2-3x\)

\(\left(x-3\right)=x^2-3x:2x\)

 

 

 

 

 

25 tháng 9 2021

a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)

Đặt \(t=x^2+6x+5\)

\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)

Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)

b)  Đặt \(t=\left(2x+1\right)^2\)

\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)

Thay t:

\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

26 tháng 5 2022

`|x-2|=3-x`

`@TH1:x-2 >= 0<=>x >= 2=>|x-2|=x-2`

    `=>x-2=3-x`

`<=>2x=5`

`<=>x=5/2` (t/m)

`@TH2:x-2 < 0<=>x < 2=>|x-2|=2-x`

    `=>2-x=3-x`

`<=>0x=1` (Vô lí)

Vậy `S={5/2}`

26 tháng 5 2022

\(\left|x-2\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3-x\\x-2=x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2-3+x=0\\x-2-x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\\left(x-x\right)+\left(-2+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\1=0\left(vl\right)\end{matrix}\right.\)

\(=>x=\dfrac{5}{2}\)