K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)

\(m^3-n^3=14\)

\(mn=1\)

\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)

\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)

\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)

\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)

\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)

Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$

$\Leftrightarrow a+b+c=2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$

 

a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)

=VP

b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)

=3-căn 5+2căn 5+2-căn 5+2

=3+2+2=7

=VP

1 tháng 8 2023

Camun đại ka!!

5:

a: =>2x+3=3+2căn 2

=>2x=2căn 2

=>x=căn 2

b: =>10+căn 3x=10+4căn 6

=>căn 3x=4căn 6=căn 96

=>3x=96

=>x=32

c: =>3x-2=7-4căn 3

=>3x=9-4căn 3

=>x=3-4/3*căn 3

a: =>\(2\cdot\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

18 tháng 2 2021

Q = \(\dfrac{3\sqrt{x}}{x+1}\) (x \(\ge\) 0; x \(\ne\) 4)

Áp dụng BĐT Cô-si cho 2 số không âm x và 1 ta được:

\(\dfrac{x+1}{2}\ge\sqrt{x}\) (1)

\(\Leftrightarrow\) \(\dfrac{3\cdot\dfrac{x+1}{2}}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (x + 1 > 0 với mọi x \(\ge\) 0)

\(\Leftrightarrow\) \(\dfrac{6}{2\left(x+1\right)}\ge\dfrac{3\sqrt{x}}{x+1}\)

\(\Leftrightarrow\) \(\dfrac{3}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (*)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 1 (TM)

Khi đó: \(\dfrac{3\sqrt{x}}{x+1}\le\dfrac{3}{1+1}=\dfrac{3}{2}\)

Vậy QMax = \(\dfrac{3}{2}\) khi và chỉ khi x = 1

Chúc bn học tốt!

19 tháng 2 2021

Mình cảm ơn ạ

19 tháng 3 2021

không có câu hỏi ạ

19 tháng 3 2021

undefined

8 tháng 10 2021

Làm giúp mình với mọi người ơi

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)