Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi DH là khoảng cách thấp nhất từ máy bay đến mặt đất, khi đó AC có độ dài lớn nhất là 2,2m. Dựng hình chữ nhật DHEK => DH = EK
Do BA = BE = BC = 1,5m cố định nên tam giác ACE vuông tại A
Xét tam giác ACE vuông tại A có cos\(\widehat{ECA}\) = \(\dfrac{CA}{CE}=\dfrac{2,2}{3}\) => \(\widehat{ECA}\) \(\approx\) 42o50'
BA = BC => tam giác ABC cân tại B => \(\widehat{BAC}=\widehat{BCA}\) = \(\widehat{ECA}\) \(\approx\) 42o50'
=> \(\widehat{DBK}\) = \(\widehat{BAC}+\widehat{BCA}\) = 2.\(\widehat{BCA}\) = 85o40'
Xét tam giác DBK vuông tại D có: BK = BD. cos\(\widehat{DBK}\)
= 4.cos85o40' \(\approx\) 0,3022
=> DH = KE \(\approx\) 1,5 - 0,3022 \(\approx\)1,2 (m)
\(g,ĐK:x\ge0\\ PT\Leftrightarrow10\sqrt{x}+8\sqrt{x}-11\sqrt{x}=21\\ \Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ h,ĐK:x\ge0\\ PT\Leftrightarrow6\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=15\\ \Leftrightarrow\sqrt{3x}=5\Leftrightarrow3x=25\Leftrightarrow x=\dfrac{25}{3}\left(tm\right)\\ i,ĐK:x\ge0\\ PT\Leftrightarrow12\sqrt{x}-21-2\sqrt{x}+10=6\sqrt{x}-12\\ \Leftrightarrow4\sqrt{x}=-1\Leftrightarrow\sqrt{x}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\\ j,ĐK:x\ge2\\ PT\Leftrightarrow6\sqrt{x-2}-15\cdot\dfrac{1}{5}\sqrt{x-2}=20+4\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=-20\Leftrightarrow x\in\varnothing\)
\(k,ĐK:x\ge3\\ PT\Leftrightarrow6\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\Leftrightarrow x=28\left(tm\right)\\ l,ĐK:x\ge5\\ PT\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
Lời giải:
Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)
\(m^3-n^3=14\)
\(mn=1\)
\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)
\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)
\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)
\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)
\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)
Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$
$\Leftrightarrow a+b+c=2$
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$
a: Ta có: BC⊥BA tại B
nên BC là tiếp tuyến của (A;AB)
b: Xét (A) có
CB là tiếp tuyến
CD là tiếp tuyến
Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
hay AC\(\perp\)BD
Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm
Q = \(\dfrac{3\sqrt{x}}{x+1}\) (x \(\ge\) 0; x \(\ne\) 4)
Áp dụng BĐT Cô-si cho 2 số không âm x và 1 ta được:
\(\dfrac{x+1}{2}\ge\sqrt{x}\) (1)
\(\Leftrightarrow\) \(\dfrac{3\cdot\dfrac{x+1}{2}}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (x + 1 > 0 với mọi x \(\ge\) 0)
\(\Leftrightarrow\) \(\dfrac{6}{2\left(x+1\right)}\ge\dfrac{3\sqrt{x}}{x+1}\)
\(\Leftrightarrow\) \(\dfrac{3}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (*)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 1 (TM)
Khi đó: \(\dfrac{3\sqrt{x}}{x+1}\le\dfrac{3}{1+1}=\dfrac{3}{2}\)
Vậy QMax = \(\dfrac{3}{2}\) khi và chỉ khi x = 1
Chúc bn học tốt!
a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)
=VP
b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)
=3-căn 5+2căn 5+2-căn 5+2
=3+2+2=7
=VP
5:
a: =>2x+3=3+2căn 2
=>2x=2căn 2
=>x=căn 2
b: =>10+căn 3x=10+4căn 6
=>căn 3x=4căn 6=căn 96
=>3x=96
=>x=32
c: =>3x-2=7-4căn 3
=>3x=9-4căn 3
=>x=3-4/3*căn 3
a: =>\(2\cdot\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>2*căn x-5=4
=>căn x-5=2
=>x-5=4
=>x=9
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
Câu 1 :
a, \(A=\left(\frac{1}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+1}\right).\frac{1}{\sqrt{a}}\)
\(=\left(\frac{\sqrt{a}+1}{a-1}+\frac{\sqrt{a}-1}{a-1}\right).\frac{1}{\sqrt{a}}=\frac{2\sqrt{a}}{a-1}.\frac{1}{\sqrt{a}}=\frac{2}{a-1}\)
b, Ta có :A = 1 hay \(\frac{2}{a-1}=1\Leftrightarrow a-1=2\Leftrightarrow a=3\)( tmđkxđ )
Câu 3 :
\(\hept{\begin{cases}2x-3y=1\left(1\right)\\3x+y=7\left(2\right)\end{cases}}\)Ta có : \(y=7-3x\)(k)
Thay vào phương trình 1 ta được :
\(2x-3\left(7-3x\right)=1\)
\(\Leftrightarrow2x-21+9x=1\Leftrightarrow11x=22\Leftrightarrow x=2\)
Thay vào (k) ta được : \(y=7-3.2=7-6=1\)
Vậy \(\left\{x;y\right\}=\left\{2;1\right\}\)