Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1,25^2-0,5^2+3,25^3\)
\(=\left(\frac{5}{4}\right)^2-\left(\frac{1}{2}\right)^2+\left(\frac{13}{4}\right)^3\)
\(=\frac{25}{16}-\frac{1}{4}+\frac{2197}{64}\)
\(=\frac{2281}{64}\)
b) \(1,2+2,4^2-\left(3\frac{1}{2}\right)^2\)
\(=\frac{6}{5}+\left(\frac{12}{5}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\frac{6}{5}+\frac{144}{25}-\frac{49}{4}\)
\(=\frac{-529}{100}\)
\(=0.75-\dfrac{7}{3}-0.75+9\cdot\left(-\dfrac{1}{9}\right)=-\dfrac{7}{3}-1=-\dfrac{10}{3}\)
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
Đặt A = 20 + 21 + 22 + 23 + ... + 210
Ta có : 2A = 21 + 22 + 23 + ... + 211
2A - A = (21 + 22 + 23 + ... + 211) - (20 + 21 + 22 + 23 + ... + 210)
A = 211 - 20 = 2048 - 1 = 2047
20 + 21 + 22 + 23 + ....... + 210
= 1 + 21 + 22 + 23 + ........... + 210
Ta biết từ 1 đến 10 có tổng là 55
=> 1 + 255
Mình không biết làm và đồng thời mình cũng là người mới gia nhập online math nên còn nhiều điều chưa biết, mong các bạn giúp đỡ. Các bạn làm bài trên giúp mình với. thanks các bạn nhiều. Ai nhanh nhất và đúng mình sẽ k cho nhé yêu các bạn
a) 1 + 3 + 5 + ... + 13
= (13 + 1).[(13 - 1) : 2 + 1] : 2
= 14 . 7 : 2
= 49
= 7²
b) 3² + 4² + 12²
= 9 + 16 + 144
= 169
= 13²
a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10
Gọi biểu thức trên là A , ta có :
A = 2^1+2^2 9+2^3+ 2^4 +...+2^10
2A= 2^2 +2^3+2^4+...+2^10+2^11
2A-A=2^11-2^1
A=2^10
b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết
5A = 5^2+5^3+...+5^25 5^26
5A-A=5^26 - 5^1
A=5^25
xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót
`A=1+2^2 +2^3 +...+2^10`
`2A=2+2^3 +2^4 +...+2^11`
`A=2+2^3 +2^4 +...+2^11 -1-2^2 -2^3 -...-2^10`
`A=2+2^11 -1-2^2`
`A=2+2048-1-4`
`A=2045`
Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2+2^3+2^4+...+2^{11}-1-2^2-2^3-...-2^{10}\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{10}-2^{10}\right)+\left(2+2^{11}-1-2^2\right)\)
\(\Rightarrow A=0+0+0+...+2+2^{11}-1-2^2\)
\(\Rightarrow A=2+2^{11}-1-4\)
\(\Rightarrow A=2^{11}-3\)
1,25 - 0,25 : (1/3 - 0,75) . (-1/2)2
= 1,25 - 0,25 : -5/12 . -1/4
= 1,25 - 1/4 : -5/12 . -1/4
= 1,25 - 1 . -3/5 . -1/4
= 1,25 - 3/20
= 1,25 - 0,15
= 1,1
1,25 - 0,25 : (\(\dfrac{1}{3}\) - 0,75).(-\(\dfrac{1}{2}\))2
= 1,25 - 0,25 : (-\(\dfrac{5}{12}\)).\(\dfrac{1}{4}\)
= 1,25 + \(\dfrac{3}{5}\) .\(\dfrac{1}{4}\)
= 1,25 + 0,15
= 1,4