K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 7 2017

Câu 1:

Theo dữ kiện đề bài ta có:

\( \bullet \) PT \(y'=3ax^2+2bx+c=0\) nhận \(x=0\)\(x=2\) là nghiệm

\(\Rightarrow \left\{\begin{matrix} c=0\\ 3a.2^2+2b.2+c=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=0\\ 12a+4b=0(1)\end{matrix}\right.\)

\(\bullet\) \(\left\{\begin{matrix} y(0)=d=0\\ y(2)=a.2^3+b.2^2+c.2+d=-4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} d=0\\ 8a+4b+c+d=-4\leftrightarrow 8a+4b=-4(2)\end{matrix}\right.\)

Từ \((1),(2)\Rightarrow a=1,b=-3\)

Do đó pths thu được là : \(y=x^3-3x^2\)

Câu 2:

\(y=-x^3+3mx+1\)

\(\Rightarrow \) \(y'=-3x^2+3m=0\Leftrightarrow x^2=m\). Như vậy, để HS có hai cực trị thì \(m>0\)

Khi đó, hai điểm cực trị đó là \(A(\sqrt{m},2\sqrt{m^3}+1)\)\(B(-\sqrt{m},1-2\sqrt{m^3})\)

\(OAB\) là tam giác vuông tại $O$ lên \(\overrightarrow{OA}\perp \overrightarrow {OB}\Leftrightarrow (\sqrt{m},2\sqrt{m^3}+1)\perp (-\sqrt{m},1-2\sqrt{m^3})\)

\(\Leftrightarrow -\sqrt{m}\sqrt{m}+(1-2\sqrt{m^3})(1+2\sqrt{m^3})=0\Leftrightarrow -m+1-4m^3=0\Rightarrow m=\frac{1}{2}\)

(thỏa mãn điều kiện)

Vậy \(m=\dfrac{1}{2}\)

24 tháng 7 2017

cảm ơn bạn lần nữa nha

12 tháng 10 2019

Chọn D

Ta có  y ' = - 3 x 2 + 3 m

y ' = 0 ⇔ x 2 - m = 0 (*)

Đồ thị hàm số (1) có 2 điểm cực trị 

⇔ P T ( * )  có 2 nghiệm phân biệt  ⇔ m > 0 ( * * )

Khi đó 2 điểm cực trị

Tam giác OAB vuông tại O

V ậ y   m = 1 2

11 tháng 4 2016

Với mọi \(x\in R,y'=3x^2+6mx\Rightarrow y'=0\Leftrightarrow x=0\) hoặc \(x=-2m\)

Để hàm số có cực đại, cực tiểu thì phương trình \(y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow m\ne0\). Khi đó, tọa độ các điểm cực trị là \(A\left(0;2\right),B\left(-2m;4m^3+2\right)\)

\(S_{OAB}=1\Leftrightarrow OA.d\left(B;OA\right)=4\Leftrightarrow\left|2\right|=2\Leftrightarrow\begin{cases}m=1\\m=-1\end{cases}\) (thỏa mãn)

Vậy với \(m=\pm1\) thì hàm số có 2 cực trị thỏa mãn bài

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

1 tháng 6 2019

Chọn B. 

Ta có:

Do 3 điểm O,A, B không thẳng hàng  nên 

Ta có

25 tháng 11 2017

Chọn D

3 tháng 10 2023

`y'=3x^2+4mx=0<=>[(x=0),(x=-4/3m):}`    `(m ne 0)`

                                       `=>[(y=-m),(y=32/27 m^3-m):}`

          `=>A(0;-m),B(-4/3m;32/27 m^3-m)`

Để `\triangle OAB` vuong tại `O`

  `=>\vec{OA}.\vec{OB}=0`

`<=>(0;-m).(-4/3m;32/27 m^3 -m)=0`

`<=>0.(-4/3m)-m(32/27 m^3-m)=0`

`<=>m^2(32/27m^2 -1)=0`

`<=>[(m=0(L)),(m=+-[3\sqrt{6}]/8 (t//m)):}`

Vậy `m=+-[3\sqrt{6}]/8`.

19 tháng 1 2019

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

9 tháng 8 2017

Ta có y’ = 3x2- 6mx + 3( m2-1).

Hàm số đã cho  có cực trị thì phương trình y’ =0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0   có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m   

Khi đó, điểm cực đại  A( m-1; 2-2m) và điểm cực tiểu  B( m+1; -2-2m)

Ta có 

Tổng hai giá trị này là -6.

Chọn C.