Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2-xy+y+2=0\)
\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)
Ta có \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)-x^2=2\)
\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui
Áp dụng bđt AM-GM ta có \(\left(x^2+1\right)\left(x^2+y^2\right)\ge2x.2xy=4x^2y..\)
\(\Rightarrow VT\ge VP\)
Dấu = xảy ra khi \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}\Rightarrow}\left(x,y\right)\in\left\{\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\right\}\)
Đặt \(S=x+2y\Rightarrow x=S-2y\)
Xét 2 trường hợp :
TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)
Coi (1) là bất pt bậc 2 đối với ẩn y
\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)
Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)
Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)
TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)
Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)