Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\3x=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}mx+y=1\\x+my=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=1-mx\\x+m\left(1-mx\right)=1\left(1\right)\end{matrix}\right.\)
(1) ⇔x+m-m2x=1
⇔x(1-m2)=1-m (2)
TH1: 1-m2 = 0
⇔m = +- 1
Thay m=1 vào (2) ta có: 0x=0 (Luôn đúng) ⇒m=1 (chọn)
Thay m=-1 vào (2) ta có: 0x=2 (Vô lí) ⇒m=-1 (loại)
TH2: 1-m2 ≠0
⇔m≠ +-1
⇒HPT có nghiệm duy nhất:
x= \(\dfrac{1-m}{1-m^2}\)
⇒y= \(1-m.\dfrac{1-m}{1-m^2}\)
⇔y=\(\dfrac{1-m}{1-m^2}\)
Dễ thấy x=y nên:
\(\dfrac{1-m}{1-m^2}>0\)
⇔1-m>0
⇔m<1
Vậy m <1 thì Thỏa mãn yêu cầu đề bài.
Bài III.2b.
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)
hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có :
\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)
\(=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\).
\(\Rightarrow m< -3\) hoặc \(m>5\).
Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)
Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).
Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)
Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)
\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).
Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).
Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)
Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).
Vậy : Không có giá trị m thỏa mãn đề bài.
Bài IV.b.
Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).
Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).
Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).
Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).
Lại có : \(BC=MB+MC=2MB\)
\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)
Tính diện tích hình quạt tròn
Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).
\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)
\(A=\dfrac{2x-4\sqrt{x}+2-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{2x-4\sqrt{x}+2-2x+4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
1b) \(C=\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\left(a\ge0\right)=8\sqrt{a}-12\sqrt{a}+6\sqrt{a}=2\sqrt{a}\)
Bài 2:
a),b) \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}}+1\right)\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{2\sqrt{a}}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}=\dfrac{2}{1-\sqrt{a}}\)
c) \(P=\dfrac{2}{1-\sqrt{a}}=\dfrac{2}{1-\sqrt{4}}=\dfrac{2}{1-2}=-2\)
d) \(P=\dfrac{2}{1-\sqrt{a}}=9\)
\(\Rightarrow-9\sqrt{a}+9=2\Rightarrow\sqrt{a}=\dfrac{7}{9}\Rightarrow a=\dfrac{49}{81}\left(tm\right)\)
đề đây nha mn giúp mik vs ạ
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
1.
Dễ dàng tìm được tọa độ 2 giao điểm, do vai trò của A, B như nhau, giả sử \(A\left(2;4\right)\) và \(B\left(-1;1\right)\)
Gọi C và D lần lượt là 2 điểm trên trục Ox có cùng hoành độ với A và B, hay \(C\left(2;0\right)\) và \(D\left(-1;0\right)\)
Khi đó ta có ABDC là hình thang vuông tại D và C, các tam giác OBD vuông tại D và tam giác OAC vuông tại C
Độ dài các cạnh: \(BD=\left|y_B\right|=1\) ; \(AC=\left|y_A\right|=4\)
\(OD=\left|x_D\right|=1\) ; \(OC=\left|x_C\right|=2\) ; \(CD=\left|x_C-x_D\right|=3\)
Ta có:
\(S_{OAB}=S_{ABDC}-\left(S_{OBD}+S_{OAC}\right)\)
\(=\dfrac{1}{2}CD.\left(AC+BD\right)-\left(\dfrac{1}{2}BD.OD+\dfrac{1}{2}AC.OC\right)\)
\(=\dfrac{1}{2}.3.\left(4+1\right)-\left(\dfrac{1}{2}.1.1+\dfrac{1}{2}.4.2\right)=3\)
c: AF//EB
AF=EB
=>AEBF là hình bình hành
mà O là trung điểm của AB
nên O là trung điểm của EF
\(AC=BC.cosC=2R.cos30^0=R\sqrt{3}\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{3R^2}{2R}=\dfrac{3R}{2}\)
\(HF=HC.sin30^0=\dfrac{3R}{4}\)
\(CF=HC.cos30^0=\dfrac{3R\sqrt{3}}{4}\Rightarrow NF=\dfrac{3R\sqrt{3}}{8}\)
\(MF=\dfrac{1}{2}AF=\dfrac{1}{2}\left(AC-CF\right)=\dfrac{R\sqrt{3}}{8}\)
Hai tam giác vuông HFM và NFK đồng dạng (góc \(\widehat{MHF}=\widehat{KNF}\) do cùng phụ \(\widehat{HMN}\))
\(\Rightarrow\dfrac{KF}{MF}=\dfrac{FN}{HF}\Rightarrow KF=\dfrac{MF.NF}{HF}=\dfrac{3R}{16}\)
\(S_{KMN}=\dfrac{1}{2}KF.MN==\dfrac{1}{2}KF.\dfrac{AC}{2}=\dfrac{3\sqrt{3}}{64}R^2\)
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì 2m-5<0
hay m<5/2
tui tưởng phải dùng \(\dfrac{\Delta>0 }{\dfrac{x1x2< 0}{x1+x2>0}}\)