Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-4x=2x\left(x-2\right)\)
\(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
\(10\left(x-y\right)-6x\left(y-x\right)=10\left(x-y\right)+6x\left(x-y\right)=\left(10+6x\right)\left(x-y\right)=2\left(x-y\right)\left(3x+5\right)\)\(\left(x+1\right)^2-25=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
\(x^2+3x-y^2+3y=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
\(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)
\(x^2-7x-y^2+7y=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\)
\(3y^2-3z^2+3x^2=3\left(y^2-z^2+x^2\right)\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
a) \(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
b) \(25x^2-y^2\)
\(=\left(5x\right)^2-y^2\)
\(=\left(5x-y\right)\left(5x+y\right)\)
c) \(4a^2-4a+1\)
\(=\left(2a\right)^2-2.2a+1\)
\(=\left(2a-1\right)^2\)
d) \(125-a^3\)
\(=5^3-a^3\)
\(=\left(5-a\right)\left(25+5a+a^2\right)\)
e) \(7\left(a+b\right)-14\left(a+b\right)\)
\(=7\left(a+b\right)\left(1-2\right)\)
\(=-7\left(a+b\right)\)
f) \(13\left(x-y\right)+36a\left(y-x\right)\)
\(=13\left(x-y\right)-36a\left(x-y\right)\)
\(=\left(x-y\right)\left(13-36a\right)\)
g) \(3x-3y+7xy-7x^2\)
\(=3\left(x-y\right)+7x\left(y-x\right)\)
\(=3\left(x-y\right)-7x\left(x-y\right)\)
\(=\left(x-y\right)\left(3-7x\right)\)
h) \(5x^2+5y^2-20z^2-10xy\)
\(=5\left(x^2+y^2-4z^2-2xy\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 1:
\(x^2+x-6=x^2+3x-2x+6\)
\(=x\left(x+3\right)-2\left(x+3\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
\(b,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(e,x^2+5x-6=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)=\left(x-1\right)\left(x+6\right)\)
\(f,5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)\(g,7x-6x^2-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2-3x\right)\left(2x-1\right)\)\(i,2x^2+3x-5=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
\(j,16x-5x^2-3=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)=\left(5x-1\right)\left(x+3\right)\)
Bài 2,
\(a,5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)
\(b,2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
a, \(\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
b, \(5x^3-5x^2y-10x^2+10xy\)
\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)
\(=\left(5x-10x\right)\left(x-y\right)=5x\left(x-2\right)\left(x-y\right)\)
c, \(2x^2-5x=x\left(2x-5\right)\)
f, \(3x^2-7x-10=3x^2+3x^2-10x-10\)
\(=3x^2\left(x+1\right)-10\left(x+1\right)=\left(3x^2-10\right)\left(x+1\right)\)
d, \(x^3-3x^2+1-3x=x^3-3x^2-3x+1\)
\(=x^3+x^2-4x^2-4x+x+1\)
\(=x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x^2-4x+1\right)\left(x+1\right)\)
e, \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-4z^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
g, \(x^4+1-2x^2=\left(x^2-1\right)^2\)
h, \(3x^2-3y^2-12x+12y=3\left(x^2-y^2\right)-12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y-12\right)\)
\(=3\left(x-y\right)\left(x+y-4\right)\)
j, \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
a. \(\left(x^2-y^2\right)-5\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
b. \(5x^3-5x^2y-10x^2+10xy\)
\(=5\left[\left(x^3-x^2y\right)-\left(2x^2-2xy\right)\right]\)
\(=5\left[x^2\left(x-y\right)-2x\left(x-y\right)\right]\)
\(=5x\left(x-y\right)\left(x-2\right)\)
c. \(2x^2-5x=x\left(2x-5\right)\)
d. \(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2-x+1-3x\right]\)
\(=\left(x+1\right)\left[x^2-4x+1\right]\)
\(=\left(x+1\right)\left[x^2-2.x.2+2^2-2^2+1\right]\)
\(=\left(x+1\right)\left[\left(x-2\right)^2-3\right]\)
\(=\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)
e. \(3x^2-6xy+3y^2-12z^2\)
\(=3\left[x^2-2xy+y^2-4z^2\right]\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y+2z\right)\left(x-y-2z\right)\)
f. \(3x^2-7x-10\)
\(=3x^2-7x-7-3\)
\(=\left(3x^2-3\right)-\left(7x+7\right)\)
\(=3\left(x^2-1\right)-7\left(x+1\right)\)
\(=3\left(x+1\right)\left(x-1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left[3\left(x-1\right)-7\right]\)
\(=\left(x+1\right)\left(3x-8\right)\)
g. \(x^4+1-2x^2=\left(x^2\right)^2-2.x^2+1=\left(x^2-1\right)^2\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
h. \(3x^2-3y^2-12x+12y\)
\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)
\(=\left(x-y\right)\left[3\left(x+y\right)-12\right]\)
\(=\left(x-y\right).3.\left(x+y-4\right)\)
j. \(x^2-3x+2=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
P/s: ( Có j sai ns nha nhiều số quá tui rối đầu )