Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy nhân ở mẫu với biểu thức tương ướng để tạo ra biểu thức liên hợp , là HĐT số 3 ạ
a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)
\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)
\(=3\sqrt{3}\)
Vậy..
b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)
\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
Vậy..
a.\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
b. \(\frac{1}{3\sqrt{20}}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
c. \(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{2\left(\sqrt{2}+1\right)}{5\sqrt{2}}=\frac{2\sqrt{2}\left(\sqrt{2}+1\right)}{10}=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{5}\)
d.\(\frac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}=\frac{\sqrt{7}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=\frac{-\sqrt{7}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=-\sqrt{7}\)
e.\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{3-1}=\frac{3\left(\sqrt{3}-1\right)}{2}\)
f.\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\frac{2\left(\sqrt{3}+1\right)}{2}=\sqrt{3}+1\)
a) Ta có:
5√15+12√20+√5515+1220+5
=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35
b) Ta có:
√12+√4,5+√12,512+4,5+12,5
=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922
c) Ta có:
√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5
d) Ta có:
0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2
a) \(\frac{6}{\sqrt{3}}=\frac{6\sqrt{3}}{3}=2\sqrt{3}\)
b) \(\frac{8}{5\sqrt{2}}=\frac{8\cdot5\sqrt{2}}{50}=\frac{40\sqrt{2}}{50}=\frac{4\sqrt{2}}{5}\)
c) \(\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a}\)( a > 0 )
d) \(\frac{\sqrt{3-3}}{\sqrt{3-1}}=0\)
e) \(\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}=1-\sqrt{a}\)(\(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
\(\frac{1}{\sqrt{3}+\sqrt{2}+1}=\frac{\sqrt{3}+\sqrt{2}-1}{\left(\sqrt{3}+\sqrt{2}\right)^2-1}=\frac{\sqrt{3}+\sqrt{2}-1}{4+2\sqrt{6}}=\frac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(2\sqrt{6}-4\right)}{2^2.6-4^2}=\frac{........}{8}\)