Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg vuông ABC
\(MB=MC\left(gt\right)\Rightarrow MA=MB=MC=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Xét tg MAC có
MA=MC (cmt) => tg MAC cân tạo M \(\Rightarrow\widehat{MAC}=\widehat{ACB}\) (1)
\(\widehat{ABC}=\widehat{HAC}\) (cùng phụ với \(\widehat{ACB}\) ) (2)
Gọi O là giao của AH và PQ
Xét tứ giác APHQ có
\(AB\perp AC\left(gt\right);HQ\perp AC\left(gt\right)\) => AB//HQ
\(AC\perp AB\left(gt\right);HP\perp AB\left(gt\right)\) => AC//HP
=> APHQ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1 là hbh)
Mà \(\widehat{A}=90^o\left(gt\right)\) => APHQ là hình chữ nhật
\(\Rightarrow AH=PQ\) (2 đường chéo HCN băng nhau)
Mà OA=OH; OP= OQ (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> OA=OH=OP=OQ => tg OAQ là tg cân tạo O
\(\Rightarrow\widehat{HAC}=\widehat{AQP}\) (góc ở đáy tg cân) (3)
Từ (2) và (3) \(\Rightarrow\widehat{ABC}=\widehat{AQP}\) (4)
Xét tg vuông ABC có \(\widehat{ABC}+\widehat{ACB}=90^o\) (5)
Từ (1) (4) (5) \(\Rightarrow\widehat{AQP}+\widehat{MAC}=90^o\)
Gọi K là giao của PQ và AM, xét tg AKQ có
\(\widehat{AKQ}=180^o-\left(\widehat{AQP}+\widehat{MAC}\right)=180^o-90^o=90^o\)
\(\Rightarrow PQ\perp AM\left(dpcm\right)\)
Bài 11:
a: \(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
b: \(25x^2-\dfrac{9}{100}=\left(5x-\dfrac{3}{10}\right)\left(5x+\dfrac{3}{10}\right)\)
c: \(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d: \(\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
Answer:
Bài 1:
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{\left(x-1\right).\left(x+3\right)}=1\left(ĐK:x\ne1;x\ne-3\right)\)
\(\left(3x-1\right).\left(x+3\right)-\left(2x+5\right).\left(x-1\right)+4=\left(x+3\right).\left(x-1\right)\)
\(3x^2+8x-3-2x^2-5x+2x+5+4=x^2+2x-3\)
\(3x+9=0\Rightarrow x=-3\) (Không thoả mãn)
Vậy phương trình vô nghiệm
b) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(ĐK:x\ne1\right)\)
\(\frac{x^2+x+1}{x^3-1}+\frac{2x^2-5}{x^3-1}-\frac{4\left(x-1\right)}{x^3-1}=0\)
\(\frac{x^2+x+1+2x^2-5-4x+4}{x^3-1}=0\)
\(3x^2-3x=0\)
\(3x.\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\text{(Thoả mãn)}\\x=1\text{(Loại)}\end{cases}}\)