K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

Gọi 3 phần dc chia thành là x,y,z

=> 2x =3y =4z ; x+y+z =52

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=\frac{52}{\frac{13}{12}}=48\)

=>.x = 48.1/2 =24

=>y =48.1/3 =16

=>z = 48.1/4 =12

16 tháng 11 2021

 Bài 7:

\(\widehat{AOB}+\widehat{A}+\widehat{B}=360^0\)

nên Ax//By

AH
Akai Haruma
Giáo viên
21 tháng 9 2021

Lời giải:
Hình 1:

Ta thấy $\widehat{xAB}=\widehat{ABy}=120^0$, mà 2 góc này ở vị trí so le trong nên $Ax\parallel By(1)$

Lại có:
$\widehat{ABy}+\widehat{yBC}+\widehat{ABC}=360^0$

$120^0+\widehat{yBC}+80^0=360^0$

$\widehat{yBC}=160^0$

Vậy: $\widehat{yBC}=\widehat{BCz}=160^0$. Mà hai góc này ở vị trí so le trong nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

----------------------

Hình 2:

$\widehat{xAB}+\widehat{ABy}=65^0+115^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $Ax\parallel By(1)$

$\widehat{CBy}+\widehat{BCz}=130^0+50^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

28 tháng 9 2021

\(\dfrac{x+y}{2+3}=\dfrac{24}{5}=4.8\)

X = 2 . 4.8=9.6/y =3 .4.8= 14.4

câu b làm i trang

bài 2 và câu c chừng nào cô mình dạy rồi mình lài tiếp cho

Không thì để mình đi tiềm hiểu một tí rồi mình làm cho

 

 

28 tháng 9 2021

câu c

bài 2gọi chu vi của các cạnh lần lược là xyz (0 nhỏ hơn xyz nhỏ hơn 24)

Ta có x + y+z = 180 

\(\dfrac{x+y+z}{2+4+5}=\dfrac{24}{11}\)

X = 2 . 24/11= 48/11

Y=4.24/11=96/11

Z= 5.24/11=120/11

Mình doán đại đó

Tại bài này cô mình chưa dạy

30 tháng 10 2021

mỗi lần đăng chỉ được hỏi 1 bài thôi

30 tháng 10 2021

Có luật đấy à :))?

17 tháng 11 2021

1, \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

 =>   \(\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1\)

 =>   \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}\)

=>    \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=\dfrac{a+b+a+c+b+c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=>  \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{a+b}{c}\times\dfrac{a+c}{b}\times\dfrac{b+c}{a}=2.2.2=8\)

=>   \(M=8\)

17 tháng 11 2021

Thanks bạn!

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 1:

Nếu $a+b+c=0$ thì đkđb thỏa mãn

$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$

Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:

$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$

$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$

$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$

$\Rightarrow a=b=c$

$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 2a

Đặt $2x=3y=4z=t$

$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$

Khi đó:

$|x+y+3z|=1$

$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$

$\Leftrightarrow |\frac{19}{12}t|=1$

$\Rightarrow t=\pm \frac{12}{19}$

Nếu $t=\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$

Nếu $t=-\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$

17 tháng 11 2021

Bài 1:

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Leftrightarrow M=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\Leftrightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow M=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

Bài 2:

\(a,TH_1:x+y+3z=1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{19}\\y=\dfrac{4}{19}\\z=\dfrac{3}{19}\end{matrix}\right.\\ TH_2:x+y+3z=-1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{-1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{19}\\y=-\dfrac{4}{19}\\z=-\dfrac{3}{19}\end{matrix}\right.\)

17 tháng 11 2021

Bài 2:

\(b,\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Leftrightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)

 

17 tháng 11 2021

1. TH1:a+b+c≠0

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{a+c-b}{b}=1\Rightarrow a+c-b=b\Rightarrow a+c=2b\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)

\(=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ =\dfrac{2c.2a.2b}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

TH2:a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)

17 tháng 11 2021

Thanks bạn!