K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

1C

2C

3D

4B

23 tháng 10 2021

1 c

2c

3d

4b

câu hỏi đúng 100%

15 tháng 11 2015

Gọi 3 phần dc chia thành là x,y,z

=> 2x =3y =4z ; x+y+z =52

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=\frac{52}{\frac{13}{12}}=48\)

=>.x = 48.1/2 =24

=>y =48.1/3 =16

=>z = 48.1/4 =12

16 tháng 11 2021

 Bài 7:

\(\widehat{AOB}+\widehat{A}+\widehat{B}=360^0\)

nên Ax//By

AH
Akai Haruma
Giáo viên
21 tháng 9 2021

Lời giải:
Hình 1:

Ta thấy $\widehat{xAB}=\widehat{ABy}=120^0$, mà 2 góc này ở vị trí so le trong nên $Ax\parallel By(1)$

Lại có:
$\widehat{ABy}+\widehat{yBC}+\widehat{ABC}=360^0$

$120^0+\widehat{yBC}+80^0=360^0$

$\widehat{yBC}=160^0$

Vậy: $\widehat{yBC}=\widehat{BCz}=160^0$. Mà hai góc này ở vị trí so le trong nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

----------------------

Hình 2:

$\widehat{xAB}+\widehat{ABy}=65^0+115^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $Ax\parallel By(1)$

$\widehat{CBy}+\widehat{BCz}=130^0+50^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

28 tháng 9 2021

\(\dfrac{x+y}{2+3}=\dfrac{24}{5}=4.8\)

X = 2 . 4.8=9.6/y =3 .4.8= 14.4

câu b làm i trang

bài 2 và câu c chừng nào cô mình dạy rồi mình lài tiếp cho

Không thì để mình đi tiềm hiểu một tí rồi mình làm cho

 

 

28 tháng 9 2021

câu c

bài 2gọi chu vi của các cạnh lần lược là xyz (0 nhỏ hơn xyz nhỏ hơn 24)

Ta có x + y+z = 180 

\(\dfrac{x+y+z}{2+4+5}=\dfrac{24}{11}\)

X = 2 . 24/11= 48/11

Y=4.24/11=96/11

Z= 5.24/11=120/11

Mình doán đại đó

Tại bài này cô mình chưa dạy

30 tháng 10 2021

mỗi lần đăng chỉ được hỏi 1 bài thôi

30 tháng 10 2021

Có luật đấy à :))?

17 tháng 11 2021

1, \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

 =>   \(\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1\)

 =>   \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}\)

=>    \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=\dfrac{a+b+a+c+b+c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=>  \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{a+b}{c}\times\dfrac{a+c}{b}\times\dfrac{b+c}{a}=2.2.2=8\)

=>   \(M=8\)

17 tháng 11 2021

Thanks bạn!

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 1:

Nếu $a+b+c=0$ thì đkđb thỏa mãn

$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$

Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:

$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$

$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$

$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$

$\Rightarrow a=b=c$

$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 2a

Đặt $2x=3y=4z=t$

$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$

Khi đó:

$|x+y+3z|=1$

$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$

$\Leftrightarrow |\frac{19}{12}t|=1$

$\Rightarrow t=\pm \frac{12}{19}$

Nếu $t=\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$

Nếu $t=-\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$

17 tháng 11 2021

Bài 1:

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Leftrightarrow M=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\Leftrightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow M=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

Bài 2:

\(a,TH_1:x+y+3z=1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{19}\\y=\dfrac{4}{19}\\z=\dfrac{3}{19}\end{matrix}\right.\\ TH_2:x+y+3z=-1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{-1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{19}\\y=-\dfrac{4}{19}\\z=-\dfrac{3}{19}\end{matrix}\right.\)

17 tháng 11 2021

Bài 2:

\(b,\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Leftrightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)

 

17 tháng 11 2021

1. TH1:a+b+c≠0

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{a+c-b}{b}=1\Rightarrow a+c-b=b\Rightarrow a+c=2b\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)

\(=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ =\dfrac{2c.2a.2b}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

TH2:a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)

17 tháng 11 2021

Thanks bạn!