K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

1/ Ta có: \(\frac{y}{16}=\frac{-1}{4}\)

=> \(y.4=\left(-1\right).16=-16\)

=> \(y=\left(-16\right):4=-4\)

Có: \(\frac{-5}{x}=\frac{y}{16}\)

=> \(x.y=\left(-5\right).16=\left(-80\right)\)

Hay: \(x.\left(-4\right)=-80\)

=> \(x=\left(-80\right):\left(-4\right)=20\)

Vậy: y = -4; x = 20

2/

a. \(\frac{1717-101}{2828+404}=\frac{17.101-101.1}{28.101+4.101}=\frac{101.\left(17-1\right)}{101.\left(28+4\right)}=\frac{101.16}{101.32}=\frac{16}{32}=\frac{1}{2}\)

b. \(\frac{3^5.5^{11}}{5^{12}.3^2}=\frac{3^2.3^3.5^{11}}{5^{11}.5.3^2}=\frac{3^3}{5}=\frac{27}{5}\)

3/ Gọi d là ƯCLN (2n + 1; 3n +1)

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

=> (6n + 3) - (6n + 2) ⋮d

=> 6n + 3 - 6n - 2 ⋮d

=> 1⋮d

=> d = 1

Hay: ƯCLN (2n + 1; 3n +1) = 1

=> Phân số \(\frac{2n+1}{3n+1}\) tối giản với mọi n Z

P/s: Mình giải hết cho bạn rồi đó!

8 tháng 4 2020

Cảm ơn bạn

18 tháng 5 2020

câu 1b

Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*

Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d

suy ra: 2(3n-7) chia ht cho d ,  3(2n-5) chia ht cho d

suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d

dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1

Vậy......

          

18 tháng 5 2020

1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản 

Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1 

Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) )  = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1

=> \(\frac{3n-7}{2n-5}\) là phân số tối giản 

3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)

Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)

=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

5 tháng 7 2021

Bài 1 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

\(\frac{5}{x}=\frac{1+2y}{6}\)

=>  x ( 1+2y ) = 5 . 6 

=> x ( 2y+1 ) = 30 

=> x;2y+1 \(\in\) Ư(30)

vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}

             Ta có bảng 

2y+113515-1-3-5-15
x301062-30-10-6-2
y0127-1-2-3-8

Vậy các cặp x;y  tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\) 

5 tháng 7 2021

Bài 2 , b 

(3n+2) \(⋮\) n-1

=> 3(n-1) + 5 \(⋮\) n-1

Vì 3(n-1) \(⋮\) n-1  => 5 \(⋮\) n-1

hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}

 n \(\in\) {2;6;0;-4}

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

21 tháng 4 2016

dễ mak 

chỉ cần nói cái dưới là u của cái trên

rồi tim ra 1 số chia hết cái dưới 

5 tháng 3 2018

a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:

\(3x+2⋮x+1\)

Ta có: 3x + 2 = 3(x + 1) - 1

mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1

có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1  hay x + 1 \(\in\)Ư(-1) = {1;-1}

Ta có bảng sau:

x+11-1
x0-2

Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2

b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)

\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)

\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)

\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(=>1⋮d\) \(=>d=1\)

Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản