K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

\(f\left(-2\right)=-3.\left(-2\right)+5\frac{3}{5}+\frac{-4}{3}+\frac{-3}{5}=9\frac{2}{3}\)

\(f\left(\frac{1}{3}\right)=-3.\frac{1}{3}+5\frac{3}{5}+\frac{-4}{3}+\frac{-3}{5}=2\frac{2}{3}\)

21 tháng 1 2022

2)\(f\left(x\right)=3x+3\frac{2}{3}=10\)

        \(3x=10-3\frac{2}{3}\)

             \(x=\frac{19}{3}:3\)

                \(x=\frac{19}{9}\)

 3)\(\frac{\left(x-2\right)^3}{8}=\frac{-27}{64}?\frac{3}{5}+\frac{-4}{3}+\frac{-3}{5}\)

13 tháng 9 2021

bằng -49/10 nha bạn!

13 tháng 9 2021

b=5/46

1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5

Bậc là 8

Phần biến là x^3;y^5

Hệ số là -2

2:

a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6

=3x^4-2x^3+4x^2+3x-6

Q(x)=2x^4+4x^2-2x^3+x^4+3

=3x^4-2x^3+4x^2+3

b: A(x)=P(x)-Q(x)

=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3

=3x-9

A(x)=0

=>3x-9=0

=>x=3

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

15 tháng 7 2021

) Xét ΔOBH và ΔODA có 

OB=OD(gt)

ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)

mà ˆOHB=900OHB^=900(gt)

nên ˆOAD=900OAD^=900

hay AH⊥⊥AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

Bài 3:

a) Ta có: \(A-\left(9x^3+8x^2-2x-7\right)=-9x^3-8x^2+5x+11\)

\(\Leftrightarrow A=-9x^3-8x^2+5x+11+9x^3+8x^2-2x-7\)

\(\Leftrightarrow A=3x+4\)

b) Đặt A(x)=0

nên 3x+4=0

hay \(x=-\dfrac{4}{3}\)

22 tháng 7 2021

Bạn có biết giải bài hình k giúp mình với 21:00 mình phải nộp rồi 

19 tháng 12 2021

Câu 4: 

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

19 tháng 12 2021

Câu 1:

\(a,=\dfrac{1}{2}+9\cdot\dfrac{1}{9}-18=\dfrac{1}{2}+1-18=-\dfrac{33}{2}\\ b,=2-1+4\cdot\dfrac{1}{4}+9\cdot\dfrac{1}{9}\cdot9=1+1+9=11\\ c,=-21,3\left(54,6+45,4\right)=-21,3\cdot100=-2130\\ d,B=\left(\dfrac{1}{16}+\dfrac{1}{2}-\dfrac{1}{16}\right):\left(\dfrac{1}{8}-\dfrac{1}{8}+1\right)=\dfrac{1}{2}:1=\dfrac{1}{2}\)

28 tháng 4 2022

1)
a. Xét tg ABC cân tại A có AC=AB; gACB = g ABC.
Xét tg ACN và tg ABM có:
CN=BM (gt)
AC=AB
gACB=gABC
=> tg ACN = tg ABM (cgc)
=> AN=AM (2 cạnh tg ứng)
H là trung điểm BC nên AH là đường trung tuyến của tg ABC 
Mak tg ABC cân => H cũng là đường cao của tg ABC => AH ⊥ BC
b. Vì H là trung đ của BC nên CH=HB=BC/2= 3cm
Áp dụng định lý Py ta go vào tg AHB có:
AB^2=AH^2+HB^2
AH^2= AB^2 - HB^2
AH^2= 5^2 - 3^2 = 16 cm
=> AH= 4 cm
c. Xét tg AMN và tg KMB có:
AM=KM (gt)
MN=BM (gt)
gHMA=gKMB (đối đỉnh)
=> tg AMN = tg KMB (cgc)
d. tg AMN = tg KMB => gMAN=gMKB
=> AN=KB=Am
Mà AB>AM (quan hệ giữ đường xiêng và hình chiếu) nên AB>BK
=> gBKA> gBAK
=> gMAN>gBAM

28 tháng 4 2022

Bổ sung câu 1b:
MN= BC/3=6/3=2 cm
MH= HN= MN/2= 1 cm
Áp dụng đl Py-ta-go vào tg AMH có
AM^2=AH^2+MH^2= 4^2+1^2= 17
=> AM= căn 17 cm

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC
\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

EC=DB

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{KCB}=\widehat{KBC}\)

hay ΔKBC cân tại K

d: Xét ΔABK và ΔACK có

AB=AC
BK=CK

AK chung

Do đó: ΔABK=ΔACK

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)

hay AK là tia phân giác của góc BAC