K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAB có DH là phân giác

nên \(\dfrac{AH}{HB}=\dfrac{AD}{DB}\)

=>\(\dfrac{3}{HB}=\dfrac{6}{8}=\dfrac{3}{4}\)

=>HB=4(cm)

b: Xét ΔADC có DK là phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AD}{DC}\)

Ta có: \(\dfrac{AK}{KC}=\dfrac{AD}{DC}\)

\(\dfrac{AH}{HB}=\dfrac{AD}{DB}\)

mà DC=DB

nên \(\dfrac{AK}{KC}=\dfrac{AH}{HB}\)

Xét ΔABC có \(\dfrac{AK}{KC}=\dfrac{AH}{HB}\)

nên HK//BC

31 tháng 5 2020

Phần a là HBA ~ ABC chứ nhỉ?

a, Xét tam giác HBA và tam giác ABC có:

góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)

góc B chung

\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)

b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)

Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)

Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)

\(\Delta\)HAC ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)

c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA

\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)

BC2 = 152 + 202

BC2 = 625

BC = \(\sqrt{625}\) = 25 (cm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)

hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)

Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)

\(\Delta\)HBA ~ \(\Delta\)HAC (cmt)

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)

\(\Rightarrow\) \(AH^2=16\cdot9=144\)

\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)

d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)

\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)

hay \(\frac{20-CD}{15}=\frac{CD}{25}\)

\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)

\(\Rightarrow\) 5(20 - CD) = 3CD

\(\Leftrightarrow\) 100 - 5CD = 3CD

\(\Leftrightarrow\) 3CD + 5CD = 100

\(\Leftrightarrow\) 8CD = 100

\(\Leftrightarrow\) CD = 12,5 (cm)

\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)

e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!

Xét tam giác CMD và tam giác CAB có:

góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)

góc C chung

\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)

Chúc bn học tốt!! (Dài quá :vvv)

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\) chung

Do đó: ΔHBA∼ΔABC(g-g)(1)

Xét ΔHAC và ΔABC có

\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\) chung

Do đó: ΔHAC∼ΔABC(g-g)(2)

Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)

b) Ta có: ΔHBA∼ΔABC(cmt)

\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)

hay \(AB^2=BC\cdot BH\)(đpcm)

Ta có: ΔHAC∼ΔABC(cmt)

\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)

hay \(AC^2=BC\cdot HC\)(đpcm)

Ta có: ΔHBA∼ΔHAC(cmt)

\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)

hay \(HA^2=HB\cdot HC\)(đpcm)

c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(BC^2=15^2+20^2=625\)

hay \(BC=\sqrt{625}=25cm\)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

\(15^2=25\cdot BH\)

\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)

Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)

\(\frac{HA}{15}=\frac{20}{25}\)

\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)

Vậy: BC=25cm; BH=9cm; HA=12cm

d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)

hay \(\frac{AD}{15}=\frac{CD}{25}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

hay AD+CD=20cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)

Vậy: AD=7,5cm; CD=12,5cm

e) Đề sai rồi bạn

a: Xét tứ giác AEMD có góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình bình hành

Suy ra: ED=AM

b: Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của aC

Xét ΔABC có 

D là trung điểm của AB

E là trung điểmcủa AC
DO đó: DE là đường trung bình

=>DE//BC

=>ΔADE đồng dạng với ΔABC

a: Xét ΔBHD vuông tại H và ΔCKD vuông tại K có

BD=CD

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBHD=ΔCKD

b: Ta có: AH+HB=AB

AK+KC=AC

mà AB=AC

và HB=KC

nên AH=AK

hay ΔAHK cân tại A

c: Xét ΔABC có AH/AB=AK/AC

nên HK//BC

Bài 1: Cho \(\Delta ABC\) vuông ở A, có AB= 6cm, AC= 8cm. Vẽ đường cao AH. a) Vẽ phân giác AD của góc A (D \(\in\) BC). Tính DB. b) Tính tỉ số diện tích của \(\Delta ABC\) và \(\Delta AHB\) Bài 2: Cho tam giác ABC vuông tại B, đường cao BH và AB= 9 cm, BC= 12cm. a) Tính BH b) Vẽ đường thẳng xy bất kì đi qua B, từ C dựng CN và từ A dựng AM cùng vuông góc với xy ( M và N \(\in\) xy). Chứng tỏ \(S_{ABC}\) =...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\) vuông ở A, có AB= 6cm, AC= 8cm. Vẽ đường cao AH.

a) Vẽ phân giác AD của góc A (D \(\in\) BC). Tính DB.

b) Tính tỉ số diện tích của \(\Delta ABC\)\(\Delta AHB\)

Bài 2: Cho tam giác ABC vuông tại B, đường cao BH và AB= 9 cm, BC= 12cm.

a) Tính BH

b) Vẽ đường thẳng xy bất kì đi qua B, từ C dựng CN và từ A dựng AM cùng vuông góc với xy ( M và N \(\in\) xy). Chứng tỏ \(S_{ABC}\) = \(\frac{9}{16}\) \(S_{BNC}\) .

Bài 3: Cho tam giác ABC vuông tại A có AB = 6cm, AC=8cm vẽ đường cao AH.

a) Tính BH

b) Vẽ đường phân giác AD của tam giác ABC (D \(\in\) BC). Tính tỉ số \(\frac{BD}{BC}\) rồi suy ra độ dài đoạn thẳng BD.

c) Gọi I là một điểm thuộc đoạn thẳng AH. Đường thẳng đi qua I và song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Xác định vị trí điểm AH sao cho diện tích tam giác AMN bằng \(\frac{1}{4}\) diện tích tam giác ABC.

1
30 tháng 4 2019

B1

a, áp dụng định lý pytago vào ΔABC ta được

BC2=AC2+AB2=6.6+8.8=100

⇒BC=\(\sqrt{100}\)=10

Ta có AD là phân giác

⇒ BD/CD=AB/AC

⇒BD/AB=CD/AC=(BD+CD)/(AB+AC)(theo t/c của dãy tỉ số bằng nhau)

⇔BC/(AB+AC)=BD/AB

hay 5/7=BD/6

⇒BD=(6.5)/7=30/7

b, xét ΔABC,ΔHBA có

\(\widehat{BAC}\)=\(\widehat{AHB}\)=90o

\(\widehat{ABC}\)chung

⇒ΔABC\(\sim\)ΔAHB(g_g)

⇒tỉ số đồng dạng k=BC/AB=10/6=5/3

\(\frac{S_{ABC}}{S_{HBA}}\)= k2=25/9

25 tháng 3 2019

Hằng ơi, giải ra bài này chưa vậy

Bài 3: 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

DO đó: ΔHBA\(\sim\)ΔABC

SUy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)