Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a = b + 1 ta suy ra \(a-b=1\)
Do đó : \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)...\left(a^{32}+b^{32}\right)=\left(a^4-b^4\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
Tiếp tục thu gọn theo cách trên ta được đpcm.
Có a = b+1
=> a - b =1
=> (a-b)(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = (a-b)(a^64-b^64)
=> (a^2-b^2)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = 1 . (a^64 - b^64)
=> (a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^8-b^8)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^16-b^16)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^32-b^32)(a^32+b^32) = a^64 - b^64
=> a^64-b^64 = a^64 - b^64
=> đpcm
Có: \(b=a-1\Rightarrow a-b=1\)
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
Do : b + 1 = a --> a - b = 1
Ta có : ( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)
= 1.( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)
= ( a - b)( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)
= ( a2 - b2)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)
= ( a4 - b4)( a4 + b4)( a8 + b8)( a16 + b16)
= ( a8 - b8)( a8 + b8)( a16 + b16)
= ( a16 - b16)( a16 + b16)
= a32 - b32 ( đpcm)
a)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
b/
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)
\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)
\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)
\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)
\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)
\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)
\(=a^4+b^4+c^4+0\)
\(=a^4+b^4+c^4\)