Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18.
\(y=a\) là tiệm cận ngang \(\Rightarrow a=-1\)
\(x=-c\) là tiệm cận đứng \(\Rightarrow c=-1\)
\(\Rightarrow y=\dfrac{-x+b}{x-1}\)
Đồ thị hàm số đi qua điểm \(\left(2;0\right)\Rightarrow\dfrac{-2+b}{2-1}=0\Rightarrow b=2\)
\(\Rightarrow T=0\)
19.
\(P=\dfrac{a^{\sqrt{2022}+1+2-\sqrt{2022}}}{a^{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}}=\dfrac{a^3}{a^{-2}}=a^5\)
20.
\(T=2(a+b)^{-1}.(ab)^{\frac{1}{2}}\left[1+\dfrac{1}{4}\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}} \right)^2 \right]^\frac{1}{2}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}\)\(\left[1+\dfrac{1}{4}.\dfrac{\left(a-b\right)^2}{ab}\right]^{\dfrac{1}{2}}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}\)\(\left[\dfrac{a^2+b^2+2ab}{4ab}\right]^{\dfrac{1}{2}}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}.\dfrac{a+b}{2(ab)^{\frac{1}{2}}}\)
\(=1\)
21.
Do số mũ \(\dfrac{1}{3}\) không nguyên nên:
ĐKXĐ: \(3x^2-1>0\Rightarrow x\in\left(-\infty;-\dfrac{1}{\sqrt{3}}\right)\cup\left(\dfrac{1}{\sqrt{3}};+\infty\right)\)
\(y'=-3x^2+3=0\Rightarrow x=\pm1\)
\(y\left(-1\right)=3\) ; \(y\left(1\right)=7\) ; \(y\left(0\right)=5\) ; \(y\left(2\right)=3\)
\(\Rightarrow\min\limits_{\left[0;2\right]}y=3\)
Bài 5:
\(y=m\sqrt{x^2-4x+7}-(3x-4)=\frac{(m^2-9)x^2+(24-4m^2)x+(7m^2-16)}{m\sqrt{x^2-4x+7}+3x-4}\)
Để đths $y$ có TCN thì:\(\lim\limits_{x\to \pm \infty}y\) hữu hạn
Để điều này xảy ra thì $m^2-9=0\Leftrightarrow m=\pm 3$
Kiểm tra lại thấy cả 2 giá trị này đều thỏa mãn.
Bài 6: Tiệm cận của ĐTHS chứ làm gì có tiệm cận hàm số hả bạn?
a.
\(y=\frac{x^2-3x+2}{2x^2+x-1}=\frac{x^2-3x+2}{(2x-1)(x+1)}\)
$(2x-1)(x+1)=0\Leftrightarrow x=\frac{1}{2}$ hoặc $x=-1$
Do đó TCĐ của ĐTHS là $x=\frac{1}{2}$ và $x=-1$
Mặt khác: \(\lim\limits_{x\to \pm \infty}\frac{x^2-3x+2}{2x^2+x-1}=\frac{1}{2}\) nên $y=\frac{1}{2}$ là TCN của ĐTHS.
b.
$x+1=0\Leftrightarrow x=-1$ nên $x=-1$ là TCĐ của đths
$\lim\limits_{x\to \pm \infty}\frac{1-x}{1+x}=-1$ nên $y=-1$ là TCN của đths
1+1=2vì chúng ta có 1cái người khác cho mình thêm 1cái sẽ=2 => 1+1=2
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(y=\dfrac{x-1}{x^2-mx+1}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-mx+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1}{x^2-mx+1}=0\)
Đồ thị có 3 tiệm cận khi đồ thị có 2 tiệm cận đứng
\(\Rightarrow x^2-mx+1\) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-4>0\\1-m+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\\m\ne2\end{matrix}\right.\)
\(y=\dfrac{2x-1}{mx^2-1}\)
Để hàm số có tiệm cận đứng x=2
\(\Rightarrow mx^2-1=0\) có nghiệm x=2
\(\Rightarrow m.2^2-1=0\Rightarrow4m=1\Rightarrow m=\dfrac{1}{4}\)
\(y=\dfrac{mx+2}{x+n}\left(x\ne-n\right)\)
Để hàm số có tiệm cận đứng x=2, thì mẫu có nghiệm x=2
\(\Leftrightarrow2+n=0\Leftrightarrow n=-2\)
\(A\left(3;-1\right)\in y\Rightarrow-1=\dfrac{3m+2}{3-2}\Rightarrow m=-1\)
\(\Rightarrow m+n=-1-2=-3\)
\(y=\dfrac{mx^2+2x-1}{2x^2+3}\)
Để hàm số có tiệm cận ngang y=2
\(\Rightarrow\lim\limits_{x\rightarrow\pm\infty}\dfrac{mx^2+2x-1}{2x^2+3}=2\)
\(\Rightarrow\dfrac{m}{2}=2\)
\(\Rightarrow m=4\)
\(u_k=u_{k-1}+4\left(k-1\right)+3=u_{k-2}+4\left(k-2\right)+4\left(k-1\right)+2.3=...\)
\(u_1+4\left(1+2+...+k-1\right)+3\left(k-1\right)=\left(2k+3\right)\left(k-1\right)\)
\(\Rightarrow lim\frac{\sqrt{u_{kn}}}{n}=lim\frac{\sqrt{\left(2km+3\right)\left(kn-1\right)}}{n}=k\sqrt{2}\)
Do đó :
\(\frac{a^{2019}+b}{c}=lim\frac{\sqrt{u_n}+\sqrt{u_{4n}}+\sqrt{u_{4^2n}}+...+\sqrt{u_{4^{2018}n}}}{\sqrt{u_n}+\sqrt{u_{2n}}+\sqrt{u_{2^2n}}+...+\sqrt{u_{2^{2018}n}}}\)
\(=lim\frac{\sqrt{2}\left(1+4+4^2+...+4^{2018}\right)}{\sqrt{2}\left(1+2+2^2+...+2^{2018}\right)}\)
\(=lim\frac{\frac{4^{2019}-1}{4-1}}{\frac{2^{2019}-1}{2-1}}=\frac{2^{2019}+1}{3}\)
\(\Rightarrow S=a+b-c=2+1-3=0\)
mình giải giúp bạn phần đầu phần sau bạn tự giải nha