K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(-\left(x+3\right)\left(x+2\right)+\left(2x-3\right)\left(5-x\right)\)

\(=-x^2-5x-6+10x-2x^2-15+3x\)

\(=-3x^2+8x-21\)

3: Ta có: \(\left(-x+6\right)\left(-x-2\right)+\left(3x-1\right)\left(-2x-3\right)\)

\(=\left(x-6\right)\left(x+2\right)-\left(3x-1\right)\left(2x+3\right)\)

\(=x^2-4x-12-6x^2-9x+2x+3\)

\(=-5x^2-11x-9\)

12 tháng 4 2021

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

12 tháng 4 2021

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

9 tháng 10 2021

Tách ra nha em, nhiều quá!

Bài 5: 

4: ta có: \(5x\left(-x+1\right)-5\left(-x^2-x\right)=0\)

\(\Leftrightarrow-5x\left(x-1\right)+5x\left(x+1\right)=0\)

\(\Leftrightarrow5x\left(-x+1+x+1\right)=0\)

hay x=0

 

6 tháng 2 2018

Có : x^3-x^2+2x-8

= (x^3-2x^2)+(x^2-2x)+(4x-8) 

= (x-2).(x^2+x+4)

Tk mk nha

28 tháng 4 2020

MNG COPY RỒI LÀM NHA!

Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R

=> |x - 2| + |x - 5| + |x - 18|  ≥0∀x∈R≥0∀x∈R

=> D có giá trị nhỏ nhất khi x = 2;5;18

Mà x ko thể đồng thời nhận 3 giá trị

Nên GTNN của D là : 16 khi x = 5   ok nha bạn

x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4

Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)

Vậy GTNN của x^2/x-1 = 4 <=> x= 2

k mk nha

a: Xét ΔAHD có 

AP là đường cao ứng với cạnh HD

AP là đường trung tuyến ứng với cạnh HD

Do đó: ΔAHD cân tại A

mà AP là đường cao ứng với cạnh HD

nên AP là đường phân giác ứng với cạnh HD

Xét ΔAHE có 

AQ là đường cao ứng với cạnh HE

AQ là đường trung tuyến ứng với cạnh HE

Do đó: ΔHAE cân tại A

mà AQ là đường cao ứng với cạnh HE

nên AQ là đường phân giác ứng với cạnh HE

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\left(\widehat{QAH}+\widehat{PAH}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: E,A,D thẳng hàng

mà AD=AE(=AH)

nên A là trung điểm của DE

2 tháng 10 2021

a) Xét \(\Delta ADP\) = \(\Delta AHP\) có: ( cạnh huyền -cạnh góc vuông)

góc APD = APH=90o

AD = AH

AP chung                                               

=> AD=AH (1)

CMTT với \(\Delta AEQ=\Delta AHQ\left(CH-CGV\right)\)

=> AE= AH (2)

Từ 1 và 2 => AD= AE

=> A là trung điểm của DE

b) Xét \(\Delta DHE\) có:

DP=PH; HQ=QE

=> PQ là đg trung bình của tam giắc DHE

=> PQ// DE; PQ=1/2 DE

c) Xét tứ giác APHQ có: góc HPA= 90o; Góc A =90o; góc HQA=90o 

=> Tứ giác APHQ là HCN

=> PQ=AH ( theo t/c HCN)