Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, xét tam giác BDA và tam giác BEC có : ^ABC chung
^BEC = ^BDA = 90
=> tam giác BDA đồng dạng với tam giác BEC (g-g)
=> ^BAD = ^BCE
2, xét tam giác HEA và tam giác BDA có : ^BAD chung
^HEA = ^BDA = 90
=> tam giác HEA đồng dạng với tg BDA (g-g)
=> ^AHE = ^ABD
3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60
có ^BAC + ^BAD = 90 => ^BAD = 30
mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC
XONG tính ra ^C
\(1.\) \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)
\(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)
\(=14\)
vậy P=14
\(2.\) \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)
\(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)
\(\Rightarrow|x+2|=4\)
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
vậy \(x\in\left\{2;-6\right\}\)
bài 1
ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)
2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)
\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)
\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)
a/ Ta có \(\widehat{B}=\widehat{C}\) => tam giác ABC cân tại A => AB=AC
AM là phân giác góc \(\widehat{A}\)
=> AM là đường cao của tg ABC (trong tg cân phân giác của góc ở đỉnh đồng thời là đường cao và đường trung trực)
\(\Rightarrow MB=MC\)
\(\Rightarrow AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
b/ Xét tg BMI có
\(\widehat{AIB}=\widehat{AMB}+\widehat{IBM}\) (trong tg góc ngoài bằng tổng hai góc trong không kề với nó)
\(\Rightarrow\widehat{AIB}=90^o+\frac{\widehat{B}}{2}\) mà \(\widehat{B}=\widehat{C}\Rightarrow\widehat{AIB}=90^o+\frac{\widehat{C}}{2}\)
c/ Ta có
MN//AC;\(MB=MC\Rightarrow NA=NB=\frac{AB}{2}\) (Trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)
=> MN là đường trung bình của tg ABC \(\Rightarrow MN=\frac{AC}{2}=\frac{AB}{2}\)
\(\Rightarrow MN=NA\) => tg AMN cân tại N \(\Rightarrow\widehat{NAM}=\widehat{NMA}\)
d/ Ta có \(\widehat{AIB}=90^o+\frac{\widehat{C}}{2}\Rightarrow\widehat{B}=\widehat{C}=2\widehat{AIB}-180^o=40^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-80^o=100^o\)
a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)
\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)
2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)
Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)
3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)
4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)
Vậy \(x=3,y=-3,z=2\)
a) \(\frac{1985.1987-1}{1980+1985.1986}=\frac{1985.1986+1985-1}{1980+1985.1986}=\frac{1985.1986+1984}{1985.1986+1980}>\frac{1985.1986+1980}{1985.1986+1980}=1\)
b) \(A=\frac{13^{15}+1}{13^{16}+1}=\frac{13^{15}+\frac{1}{13}+\frac{12}{13}}{13^{16}+1}=\frac{\frac{1}{13}\left(13^{16}+1\right)+\frac{12}{13}}{13^{16}+1}=\frac{1}{13}+\frac{12}{13\left(13^{16}+1\right)}\)
\(B=\frac{13^{16}+1}{13^{17}+1}=\frac{13^{16}+\frac{1}{13}+\frac{12}{13}}{13^{17}+1}=\frac{\frac{1}{13}\left(13^{17}+1\right)+\frac{12}{13}}{13^{17}+1}=\frac{1}{13}+\frac{12}{13\left(13^{17}+1\right)}\)
Có \(13^{16}+1< 13^{17}+1\)nên \(\frac{12}{13\left(13^{16}+1\right)}>\frac{12}{13\left(13^{17}+1\right)}\)
Vậy \(A>B\).
1)xét tứ giác EACD
EA//DC,ED//AC
=>EACD hình bình hành
E=C=40(hai góc đối)
ta có DAC=BAC/2=60/2=30(AD là tia pg)
mà ED//AC
=>ADE=DAC=30(so le)
xét tg EAD
E+ADE+EAD=180
EAD=180-ADE-E=180-30-40=110
2)
a)xét tgAHB và tgDHB
BAH=BDH=90,ABH=HBD(BH là tia pg),BH chung
=>tgAHB=tgDHB(cạnh huyền góc nhọn)
=>AH=HD,BA=BD
b)xét tg BDE và tgBAC
BA=BD,ABC chung,BAC=BDE=90
=>tgBDE=tgBAC(gcg)
=>BE=BC
xét tg BEC
BA/BE=BD/BC=>AD//EC(ta lét đảo)
bạn có biết làm câu c ko thì giúp mình nốt đi plss