Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{17}-5\sqrt{2}+3\\ b,=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\\ =\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\\ c,=\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)=2-9=-7\\ d,4+\sqrt{7}-\sqrt{2}\)
a) \(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2.2}=\sqrt{4}=2\)
b) \(=\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{8+2\sqrt{15}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)^2\left(\sqrt{15}-4\right)=2\left(4+\sqrt{15}\right)\left(\sqrt{15}-4\right)\)
\(=-2\)
b: =căn 10-3+4-căn 10=1
a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)
a: Ta có: \(\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
=9-2
=7
c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=2
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
a: Ta có: \(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
\(=5-\sqrt{19}-\sqrt{19}+4\)
\(=9-2\sqrt{19}\)
b: Ta có: \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
\(=3-2\sqrt{2}-3+2\sqrt{2}\)
=0
c.
Căn bậc 2 không xác định do $2-\sqrt{5}< 0$
d.
\(=\sqrt{(3+\sqrt{3})^2}(3+\sqrt{3})=|3+\sqrt{3}|(3+\sqrt{3})=(3+\sqrt{3})^2=12+6\sqrt{3}\)
e.
\(=(2-\sqrt{5})\sqrt{(2+\sqrt{5})^2}=(2-\sqrt{5})|2+\sqrt{5}|=(2-\sqrt{5})(2+\sqrt{5})=4-5=-1\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
a, \(\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
Vì \(3=\sqrt{9}>\sqrt{5}\)
b, \(\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{3}\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left|\sqrt{5}+\sqrt{3}\right|=\sqrt{5}+\sqrt{3}\)
c, \(\sqrt{11+4\sqrt{6}}=\sqrt{11+2.2\sqrt{2}.\sqrt{3}}\)
\(=\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{2}+\sqrt{3}\right|=2\sqrt{2}+\sqrt{3}\)