Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\sqrt{16}=4\)
\(\sqrt{36}=6\)
\(\sqrt{81}=9\)
\(\sqrt{144}=12\)
\(\sqrt{625}=25\)
\(\sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\)
\(\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{\dfrac{64}{49}}=\dfrac{8}{7}\)
\(\sqrt{\dfrac{169}{400}}=\dfrac{13}{20}\)
\(\sqrt{11\dfrac{1}{9}}=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
\(\sqrt{1\dfrac{11}{25}}=\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{1\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}=\dfrac{7}{6}\)
Câu 2:
a) \(3.\sqrt{16}-4\sqrt{\dfrac{1}{4}}\)
\(=3.4-4.\dfrac{1}{2}\)
\(=4.\left(3-\dfrac{1}{2}\right)\)
\(=4.\dfrac{5}{2}\)
\(=10\)
b) \(-5\sqrt{\dfrac{9}{16}}+4\sqrt{0,36}-6\sqrt{0,09}\)
\(=-5.\dfrac{3}{4}+4.0,6-6.0,3\)
\(=\dfrac{-15}{4}+\dfrac{12}{5}-\dfrac{9}{5}\)
\(=\dfrac{-75+48-36}{20}=\dfrac{-63}{20}\)
c) \(2.\sqrt{9}-10.\sqrt{\dfrac{1}{25}}\)
\(=2.3-10.\dfrac{1}{5}\)
\(=6-2\)
\(=4\)
d) \(-3\sqrt{\dfrac{25}{16}}+5\sqrt{0,16}-7\sqrt{0,64}\)
\(=-3.\dfrac{5}{4}+5.0,4-7.0,8\)
\(=\dfrac{-15}{4}+2-\dfrac{28}{5}\)
\(=\dfrac{-75+40-28}{20}=\dfrac{-63}{20}\)
e) \(3\sqrt{25}-27\sqrt{\dfrac{4}{81}}\)
\(=3.5-27.\dfrac{2}{9}\)
\(=15-6\)
\(=9\)
f) \(-21\sqrt{\dfrac{100}{49}}+3\sqrt{0,04}-5\sqrt{0,25}\)
\(=-21.\dfrac{10}{7}+3.0,2-5.0,5\)
\(=-30+\dfrac{3}{5}-\dfrac{5}{2}\)
\(=\dfrac{-300+6-25}{10}=\dfrac{-319}{10}\)
h) \(5\sqrt{9}-4\sqrt{\dfrac{1}{16}}+6\sqrt{25}\)
\(=5.3-4.\dfrac{1}{4}+6.5\)
\(=15-1+30\)
\(=14+30\)
\(=44\)
g) \(10\sqrt{\dfrac{9}{25}}-14\sqrt{\dfrac{36}{49}}+24\sqrt{\dfrac{81}{64}}\)
\(=10.\dfrac{3}{5}-14.\dfrac{6}{7}+24.\dfrac{9}{8}\)
\(=6-12+27\)
\(=\left(-6\right)+27=21\)
Câu 3:
a) \(\sqrt{x}=7\)
\(=>x=49\)
b) \(\sqrt{x}=12\)
\(=>x=144\)
c) \(\sqrt{x}=15\)
\(=>x=225\)
d) \(\sqrt{x}=20\)
\(=>x=400\)
e) \(4\sqrt{x}=8\)
\(\sqrt{x}=8:4\)
\(\sqrt{x}=2\)
\(=>x=4\)
f) \(6\sqrt{x}=3\)
\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(=>x=\dfrac{1}{4}\)
g) \(\sqrt{x-1}=1\)
\(x-1=1\)
\(x=1+1\)
\(=>x=2\)
h) \(\sqrt{x+1}=2\)
\(x+1=4\)
\(x=4-1\)
\(=>x=3\)
i) \(\sqrt{x}-2=7\)
\(\sqrt{x}=7+2\)
\(\sqrt{x}=9\)
\(=>x=81\)
j) \(14-\sqrt{x}=12\)
\(\sqrt{x}=14-12\)
\(\sqrt{x}=2\)
\(=>x=4\)
k) \(12-\sqrt{x-1}=2\)
\(\sqrt{x-1}=12-2\)
\(\sqrt{x-1}=10\)
\(x-1=100\)
\(x=100+1\)
\(=>x=101\)
l) \(\sqrt{x+5}+10=20\)
\(\sqrt{x+5}=20-10\)
\(\sqrt{x+5}=10\)
\(x+5=100\)
\(x=100-5\)
\(=>x=95\)
# Wendy Dang
3:
a: ĐKXĐ: x>=0
\(\sqrt{x}=7\)
=>x=7^2=49
b: ĐKXĐ: x>=0
\(\sqrt{x}=12\)
=>x=12^2=144
c: ĐKXĐ: x>=0
\(\sqrt{x}=15\)
=>x=15^2=225
d: ĐKXĐ: x>=0
\(\sqrt{x}=20\)
=>x=20^2=400
e: ĐKXĐ: x>=0
\(4\sqrt{x}=8\)
=>\(\sqrt{x}=2\)
=>x=4
f: ĐKXĐ: x>=0
\(6\cdot\sqrt{x}=3\)
=>\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
=>x=1/4
g: ĐKXĐ: x>=1
\(\sqrt{x-1}=1\)
=>x-1=1
=>x=2
h: ĐKXĐ: x>=-1
\(\sqrt{x+1}=2\)
=>x+1=4
=>x=3
i: ĐKXĐ: x>=0
\(\sqrt{x}-2=7\)
=>\(\sqrt{x}=9\)
=>x=81
j: ĐKXĐ: x>=0
\(14-\sqrt{x}=12\)
=>\(\sqrt{x}=14-12=2\)
=>x=4
k: ĐKXĐ: x>=1
\(12-\sqrt{x-1}=2\)
=>\(\sqrt{x-1}=10\)
=>x-1=100
=>x=101
i: ĐKXĐ: x>=-5
\(\sqrt{x+5}+10=20\)
=>\(\sqrt{x+5}=10\)
=>x+5=100
=>x=95
a: Xét ΔABE vuông tai A và ΔHBE vuông tại H có
BE chung
gócABE=gócHBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>BE là trung trực của AH
Hai tam giác này bằng nhau khi có thêm 1 trong các điều kiện sau:
AC=MN
BC=NP
\(\widehat{B}=\widehat{P}\)
\(\widehat{C}=\widehat{N}\)
3²ˣ⁺¹ + 2.3¹⁸ = 5.3¹⁸
3²ˣ⁺¹ = 5.3¹⁸ - 2.3¹⁸
3²ˣ⁺¹ = 3¹⁸.(5 - 2)
3²ˣ⁺¹ = 3¹⁸.3
3²ˣ⁺¹ = 3¹⁹
⇒ 2x + 1 = 19
2x = 19 - 1
2x = 18
x = 9
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
góc ABI=góc HBI
=>ΔBAI=ΔBHI
=>IA=IH
mà IH<IC
nên IA<IC
c: Xét ΔIAK vuông tại A và ΔIHC vuông tại H có
IA=IH
góc AIK=góc HIC
=>ΔIAK=ΔIHC
=>AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
`B=M-N=3x^2+2xy-3x-7y^2-(2x+3x^2-xy+4y^3-7y^2)`
`=3x^2-3x^2+(2xy+xy)+(-3x-2x)+(-7y^2+7y^2)-4y^3`
`=3xy-5x-4y^3`
Bậc của B là `3`.
Ta có: B=M-N
\(=3x^2+2xy-3x-7y^2-2x-3x^2+xy-4y^3+7y^2\)
\(=3xy-5x-4y^3\)
Bậc là 3
Bài 5:
a: Ta có: \(\left|\dfrac{3}{5}-x\right|\ge0\forall x\)
\(\Leftrightarrow\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)
b: Ta có: \(\left|x-\dfrac{5}{6}\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x-\dfrac{5}{6}\right|\le0\forall x\)
\(\Leftrightarrow-\left|x-\dfrac{5}{6}\right|+\dfrac{2011}{2012}\le\dfrac{2011}{2012}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
Bài 4:
a: Ta có: \(\left|x-\dfrac{1}{3}\right|+4=6\)
\(\Leftrightarrow\left|x-\dfrac{1}{3}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=2\\x-\dfrac{1}{3}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5.6-x\right|=4.6\)
\(\Leftrightarrow\left[{}\begin{matrix}5.6-x=4.6\\5.6-x=-4.6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=10.2\end{matrix}\right.\)
c: Ta có: \(\left|x\right|+x=\dfrac{2}{3}\)
\(\Leftrightarrow\left|x\right|=\dfrac{2}{3}-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-x\left(x\ge0\right)\\-x=\dfrac{2}{3}-x\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{2}{3}\\0x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\left(nhận\right)\)
Bài 4:
a: Xét ΔAND vuông tại D và ΔCNE vuông tại E có
ND=NE
\(\widehat{AND}=\widehat{CNE}\)
Do đó: ΔAND=ΔCNE
Suy ra: ND=NE
hay N là trung điểm của DE
a) `(1/5x-4/5)((2x-1)/3-2/6)=0`
`[(1/5 x-4/5=0),(2/3 x -1/3 -1/3=0):}`
`[(x=4),(x=1):}`
.
c) `50% x+2/3 x=x-5`
`1/2 x+2/3 x= x-5`
`(1/2+2/3-1)x=-5`
`1/6 x=-5`
`x=-30`
.
`A=3/(3.5)+3/(5.7)+....+3/(97.99)`
`=> 2/3 A = 2/(3.5)+2/(5.7)+....+2/(97.99)`
`=1/3-1/5+1/5-1/7+...+1/97-1/99`
`=1/3-1/99`
`=32/99`
`=> A=16/33`