K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

47 C 

48 KO NHỚ 

 

18 tháng 12 2021

Câu 5: B

1: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=30^0\)

Xét ΔABC vuông tại A có 

\(BC=\dfrac{AC}{\sin60^0}\)

\(=\dfrac{32\sqrt{3}}{3}\left(cm\right)\)

hay \(AB=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

Câu 16: A

Câu 14: C

Câu 12: A

a: \(\sqrt{2x+3}=5\)

\(\Leftrightarrow2x+3=25\)

hay x=11

b: \(\sqrt{\left(x-2\right)^2}=8\)

\(\Leftrightarrow\left|x-2\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)

2 tháng 10 2021

a) \(\sqrt{3+2x}=5\left(đk:x\ge-\dfrac{3}{2}\right)\)

\(\Leftrightarrow3+2x=25\Leftrightarrow x=11\left(tm\right)\)

b) \(\sqrt{\left(x-2\right)^2}=8\)

\(\Leftrightarrow\left|x-2\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)

c) \(đk:x\le3\)

\(\Leftrightarrow\sqrt{3-x}-3\sqrt{3-x}+5\sqrt{3-x}=6\)

\(\Leftrightarrow3\sqrt{3-x}=6\)

\(\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow3-x=4\Leftrightarrow x=-1\left(tm\right)\)

d) \(đk:x\ge0\)

\(\Leftrightarrow4\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)

\(\Leftrightarrow2\sqrt{x}=5\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

e) \(đk:x\ge-5\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\)

f) \(đk:x\ge-2\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\left(tm\right)\)

c: \(\sqrt{3+\sqrt{8}}=\sqrt{2}+1\)

d: \(\sqrt{11+4\sqrt{6}}=2\sqrt{2}+3\)

e: \(\sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)

4 tháng 9 2021

chị làm chi tiết cho em được ko ạ 

 

Bài 3: 

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

4 tháng 12 2021

1/

Để hàm số trên đồng biến 

Thì m-1 > 0 ⇔ m>1

2/

a,<bạn tự vẽ>

b,Theo phương trình hoành độ giao điểm

\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\)

Thay x=1 vào y=2x

y=2.1=2

Vậy tọa độ giao điểm A là (1;2)

3/ Để (d) đi qua điểm M (1;-2)

Thì x=1 và y=-2

Thay x=1 và y=-2 vào (d)

\(-2=a\cdot1+1\Leftrightarrow a=-3\)

vậy ....

4 tháng 12 2021

Bài 1:

Để hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến.

=> \(m-1>0.\)

<=> \(m>1.\)

Bài 2:

b) Xét phương trình hoành độ giao điểm của 2 hàm số trên ta có:

       \(\text{2x = -x + 3.}\)

<=> \(\text{2x + x - 3= 0.}\)

<=> \(\text{3x - 3 = 0.}\)

<=> \(x=1.\)

=>   \(y=2.\)

Vậy A(1; 2).

Bài 3:

Vì (d) đi qua điểm M(1; -2).

=> -2 = a. 1 + 1.

<=> a = -3.

Vậy a = -3. 

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

25 tháng 6 2021

7)Đk \(x\le2\)

Pt \(\Leftrightarrow x^2-x+8=4-2x\)

\(\Leftrightarrow x^2+x+4=0\)

\(\Delta=-15< 0\) => vô nghiệm

Vậy pt vô nghiệm

10) \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) (đk: \(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right).9}-\dfrac{4\sqrt{x+1}}{\sqrt{4}}=5\)

\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=5\) \(\Leftrightarrow x=24\) (tm)

Vậy \(S=\left\{24\right\}\)