Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
thực sự những câu này là quá dễ với người thông minh như tôi nhưng tôi không có thời gian, vội lắm! Giờ đã 9 giờ tối rồi. đi ngủ đây.
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Giải :
Bài 1 :
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow N< 1-\frac{1}{100}\)
\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow N< \frac{3}{4}\)
#~Will~be~Pens~#
Bài 1:
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{2}\)
\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Bài 2:
a) Để A là phân số \(\Leftrightarrow n-2\ne0\)
\(\Leftrightarrow n\ne2\)
Vậy \(n\ne2\)thì A là phân số .
b) Để A là số nguyên
\(\Leftrightarrow n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tự tìm n
Bài 3:
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow P< Q\)
![](https://rs.olm.vn/images/avt/0.png?1311)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
![](https://rs.olm.vn/images/avt/0.png?1311)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng
Bài 6:
Công thức tính số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là\(\frac{n\left(n-1\right)}{2}\) (giao điểm)
Vậy số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là \(\frac{2006-\left(2006-1\right)}{2}=2011015\left(giaođiểm\right)\)
Bài 5:
Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; S10 = a1 + a2 + a3 + ... + a10
Xét 10 số S1, S2,...,S10 có hai trường hợp:
+ Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak , k từ 1 đến 10) => tổng của k số a1 , a2,...,ak \(⋮10\left(đpcm\right)\)
+ Nếu không có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => chắc chắn phải có ít nhất hai số nào đó có chữ số tận cùng giống nhau. Ta gọi hai số đó là Sm và Sn \(\left(1\le m< n\le10\right)\)
Sm = a1 + a2 + ... + a(m)
Sn = a1 + a2 + ... + a(m) + a(m+1)+ a(m+2) + ... + a(n)
=> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
=> Tổng của n - m số a(m+1), a(m+2),..., a(n) \(⋮\) 10 (đpcm)