Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}=\frac{3\left(x+1\right)-2\left(y+2\right)+\left(z+2\right)}{3.2-2.3+4}\)
\(=\frac{3x-2y+z+1}{4}=\frac{106}{4}=26,5\)
\(\Leftrightarrow\hept{\begin{cases}x+1=26,5.2=53\\y+2=26,5.3=79,5\\z+2=26,5.4=106\end{cases}}\Leftrightarrow\hept{\begin{cases}x=52\\y=77,5\\z=104\end{cases}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
bài 4
khối 6 =320
khối 8 =240
khối 7 =280
khối 9 =200
bài 5
khối 6 =360
khối 7 =320
khối 8 =280
) 120 độ z' x' O z y x
thực ra bữa h off bây h rảnh nên vào lướt hoidap -.- thấy bài bạn nên làm vậy
a) Vì Oz là tia phân giác của xOy
=> xOz = zOy =\(\frac{xOy}{2}=\frac{120^0}{2}=60^0\)
Vì x'Oz' đối đính xOz
=> x'Oz' = xOz= 60 độ
làm tới đây thôi nhé mình phải đi ngủ rồi , còn mỗi câu b mấy bạn khác làm luôn đi.
1:
a: Xét ΔBCD vuông tại B và ΔKCD vuông tại K có
CD chung
\(\widehat{BCD}=\widehat{KCD}\)
Do đó: ΔBCD=ΔKCD
Suy ra: BC=KC
=>ΔBKC cân tại C
mà \(\widehat{BCK}=60^0\)
nên ΔBKC đều
b: Ta có: BC=KC
nên C nằm trên đường trung trực của BK(1)
Ta có: DB=DK
nên D nằm trên đường trung trực của BK(2)
Từ (1) và (2) suy ra DC là đường trung trực của BK