K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



8 tháng 3 2017

1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)

thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau

2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)

đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau

10 tháng 3 2017

Nghiệm nguyên.

2x+3=(2x+1)+2

\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)

2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1

\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)

18 không chia hết co 4 vậy vô nghiệm nguyên.

Viết diễn dải dài suy luận logic rất nhanh

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:
ĐK: $x\neq -5; x\neq 1$

PT \(\Leftrightarrow \frac{(x-m)(x-1)+(x+3)(x+5)}{(x+5)(x-1)}=2\)

\(\Rightarrow (x-m)(x-1)+(x+3)(x+5)=2(x+5)(x-1)\)

\(\Leftrightarrow 2x^2+x(7-m)+m+15=2x^2+8x-10\)

\(\Leftrightarrow x(m+1)=m+25\)

Để PT có 1 nghiệm duy nhất thì:

\(\left\{\begin{matrix} m+1\neq 0\\ -5(m+1)\neq m+25\\ 1(m+1)\neq m+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\\ 24\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\end{matrix}\right.\)

Đáp án A

22 tháng 2 2020

Arigato :))

2 tháng 3 2019

C1, Ta có : \(\Delta=49-4m-28=21-4m\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m< \frac{21}{4}\)

Pt có 2 nghiệm \(x_1=\frac{7-\sqrt{21-4m}}{2}\)

                       \(x_2=\frac{7+\sqrt{21-4m}}{2}\)

Do x< x2 nên để pt có 2 nghiệm đều lớn hơn 2 thì x1 > 2

Tức là \(\frac{7-\sqrt{21-4m}}{2}>2\)

\(\Leftrightarrow7-\sqrt{21-4m}>4\)

\(\Leftrightarrow\sqrt{21-4m}< 3\)

\(\Leftrightarrow21-4m< 9\)

\(\Leftrightarrow4m>12\)

\(\Leftrightarrow m>3\)

Kết hợp vs điều kiện delta của x ta đc \(3< m< \frac{21}{4}\)

Vậy ....

2 tháng 3 2019

\(2,Let\left(x+1\right)^2=a\left(a\ge0\right)\)

\(\Rightarrow a=x^2+2x+1\)

Pt trở thành \(\left(a+4\right)\left(a-7\right)-3m+2=0\)

\(\Leftrightarrow a^2-3a-28-3m+2=0\)

\(\Leftrightarrow a^2-3a-3m-26=0\)(*)

Pt này có 2nghiệm phân biệt khi \(\Delta>0\)\(\Leftrightarrow9+12m+104>0\Leftrightarrow m>-\frac{113}{12}\)

Với mỗi giá trị của a ta lại tìm đc 2 giá trị của x nên để pt ban đầu có 4 nghiệm phân biệt thì pt (*) phải có 2 nghiệm dương phân biệt 

Tức là \(\hept{\begin{cases}S>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-3>0\left(LuonĐung\right)\\-3m-26>0\end{cases}}}\)

                             \(\Leftrightarrow m< -\frac{26}{3}\)

Do đó \(-\frac{113}{12}< m< -\frac{26}{3}\)

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Lời giải:

Nếu $m-2=0$ thì PT trở thành:

$-2x+1-4=0\Leftrightarrow x=\frac{-3}{2}$. Nghĩa là $m=2$ thì PT có nghiệm duy nhất $x=\frac{-3}{2}$

Nếu $m-2\neq 0$ thì pt đã cho là pt bậc hai ẩn $x$. Để PT có nghiệm duy nhất thì:

\(\Delta'=1^2-(m-2)(1-2m)=0\)

\(\Leftrightarrow 2m^2-5m+3=0\Leftrightarrow (2m-3)(m-1)=0\Leftrightarrow m=\frac{3}{2}\) hoặc $m=1$

Vậy \(S=\left\{2;\frac{3}{2};1\right\}\)

Tổng các phần tử của $S$ là $2+\frac{3}{2}+1=\frac{9}{2}$

Đáp án D.