Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $m-2=0$ thì PT trở thành:
$-2x+1-4=0\Leftrightarrow x=\frac{-3}{2}$. Nghĩa là $m=2$ thì PT có nghiệm duy nhất $x=\frac{-3}{2}$
Nếu $m-2\neq 0$ thì pt đã cho là pt bậc hai ẩn $x$. Để PT có nghiệm duy nhất thì:
\(\Delta'=1^2-(m-2)(1-2m)=0\)
\(\Leftrightarrow 2m^2-5m+3=0\Leftrightarrow (2m-3)(m-1)=0\Leftrightarrow m=\frac{3}{2}\) hoặc $m=1$
Vậy \(S=\left\{2;\frac{3}{2};1\right\}\)
Tổng các phần tử của $S$ là $2+\frac{3}{2}+1=\frac{9}{2}$
Đáp án D.
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(Pt\Leftrightarrow2\sqrt{2x+1}=15+3\sqrt{2x+1}\)
\(\Leftrightarrow-\sqrt{2x+1}=15\)
Vế phải dương, vế trái luôn ko dương nên pt vô nghiệm
giống tui nhưng tui thi xong lâu gồi chúc bạn thi tốt hen
Ta có : \(\left|3x-1\right|=\left|2x+11\right|\)
=> \(\left[{}\begin{matrix}3x-1=2x+11\\3x-1=-2x-11\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
=> P = 12.(-2) = -24
Vậy đáp án B .
Đáp án C
giải
Chuyển vế sau đó bình phương lên
\(\sqrt{x+4}=2-\sqrt{x-1}\)
\(\Leftrightarrow\left(\sqrt{x+4}\right)^2=\left(2-\sqrt{x-1}\right)^2\)
Khai triển cái này ra xog sẽ được
\(\sqrt{x-1}=-\frac{1}{4}\) ( Vô lí)
Suy ra ko tồn tại giá trị x thỏa mãn
Hay tập nghiệm là rỗng
Vì phương trình đã cho là phương trình bậc hai nên để pt đã cho có nghiệm buộc \(\Delta\)'\(\ge\)0
\(\Leftrightarrow\left(-m-4\right)^2-\left(2m-1\right)\left(5m+2\right)\ge0\)
\(\Leftrightarrow-9m^2+9m+17\ge0\)
Tới đây mình bấm máy tính fx 570vn thì ra còn ai rảnh thì xài bảng xét dấu
\(\Leftrightarrow\dfrac{3-\sqrt{77}}{6}\le m\le\dfrac{3+\sqrt{77}}{6}\)
Vậy với .....
b, Theo hệ thức Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{2\left(m+4\right)}{2m-1}\\P=x_1.x_2=\dfrac{c}{a}=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
c,Từ \(S=\dfrac{2m+8}{2m-1}\Leftrightarrow S=1+\dfrac{9}{2m-1}\\ \Leftrightarrow\left(S-1\right)\left(2m-1\right)=9\\ \Leftrightarrow2m-1=\dfrac{9}{S-1}\\ \Leftrightarrow m=\dfrac{S+8}{2S-2}\)
Thay \(m=\dfrac{S+8}{2S-2}\) vào \(P=\dfrac{5m+2}{2m-1}\) ta được:
\(P=\dfrac{7S+6}{18}\)
\(\Leftrightarrow18P=7S+6\)
Hay \(18x_1x_2=x_1+x_2+6\)
Vậy ....
Oh :>
Sai rồi, cách này chỉ sử dụng cho vế bên tay phải có chứa ẩn x thôi. Hãy giải theo kiểu lớp 6,7
Thân!