Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,\left\{{}\begin{matrix}AC\perp AB\\BD\perp AB\end{matrix}\right.\Rightarrow AC//BD\\ b,AC//BD\Rightarrow\widehat{D_2}=\widehat{C_1}=57^0\left(đồng.vị\right)\\ \widehat{D_2}+\widehat{D_1}=180^0\left(kề.bù\right)\Rightarrow\widehat{D_1}=180^0-57^0=123^0\\ c,AC//BD\Rightarrow\widehat{D_1}=\widehat{C_1}=123^0\left(đồng.vị\right)\)
\(2,\\ \widehat{DAB}+\widehat{ABE}=50^0+130^0=180^0\)
Mà 2 góc này ở vị trí TCP nên AD//BE (1)
\(\widehat{EBC}+\widehat{BCG}=140^0+40^0=180^0\)
Mà 2 góc này ở vị trí TCP nên BE//CG (2)
Từ (1)(2) ta được AD//CG
a) 1030 và 2100 .
1030 = ( 103 )10 = 100010 .
2100 = ( 210 )10 = 102410 .
Vì 100010 < 102410 .
\(\Rightarrow\) 1030 < 2100 .
Vậy ....
b) \(\uparrow\) Lm như trên .
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{16}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)
Suy ra: \(25x=xy\Rightarrow y=25\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)
Suy ra: \(13x-13y=3x+3y\)
Thế y vào đẳng thức trên:
\(13x-325=3x+75\)
Suy ra: \(10x=325+75=400\Rightarrow x=40\)
Vậy ........
a) Xét t/giác BAD và t/giác BED có
BAD=BED (=90 độ)
ABD=EBD(BD là tia pg của ABC)
BD là cạnh chung
Do đó t/giác BAD=t/giác BED(chgn)
b)Xét t/giác ADF và t/giác EDC có
DAF=DEC(=90 độ)
AD=ED(t/giác BAD=t/giácBED)
ADF=EDC ( 2 góc đối đỉnh)
Do đó t/giác ADF=t/giác EDC(cgvgnk)
\(\Rightarrow\)AF=EC( 2 cạnh t/ứ)
Ta có BA+AF=BF
BE+EC=BC
Mà BA=BE ( t/giác BAD=t/giácBED)
AF=EC(cmt)
\(\Rightarrow\)BF=BC
Xét t/giác BDF và t/giác BDC có
BF=BC (CMT)
FBD=CDB (BD là tia pg)
BD là cạnh chung
Do đó t/giác BDF=t/giác BDC (cgc)
(giờ mình có việc r chút mình giải câu c d cho nhá)
a) Có : AB ⊥ AC tại A ( gt )
CD ⊥ AC tại C ( gt )
=> AB//CD ( Quan hệ từ vuông góc đến song song )
b) Kéo dài CD ( như hình vẽ ).
Có : Góc ACB + Góc C1 = 180o ( Tính chất 2 góc kề bù )
90o + Góc C1 = 180o ( Thay số )
Góc C1 = 90o
Có : Góc C1 + Góc C2 = Góc ACE ( Tính chất cộng góc )
90o + Góc C2 = 140o ( Thay số )
90o + Góc C2 = 50o
Có : Góc C2 + Góc CEF = 50o + 130o = 180o
Mà 2 góc này nằm ở vị trí phía trong cùng.
=> CD//EF ( dhnb )
Ta có : \(a-2b=1\)
⇒ \(a=1+2b\)
Thay \(a=1+2b\) vào biểu thức A. Ta được:
\(A=\dfrac{1+2b+b}{3b+1}+\dfrac{3b+1+2b+1}{2\left(1+2b\right)+b}\)
⇔ \(A=\dfrac{3b+1}{3b+1}+\dfrac{5b+2}{5b+2}\)
⇔ \(A=1+1\)
⇔ \(A=2\)
\(VậyA=2\)