K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

ĐKXĐ: x ≥ 0

Đặt A = (√x - 3)/(√x + 1)

A nhỏ nhất khi √x - 3 nhỏ nhất

Do x ≥ 0 ⇒ √x 0

⇒ √x - 3 ≥ -3

⇒ √x - 3 nhỏ nhất là -3 khi x = 0

⇒ min A = (√0 - 3)/(√0 + 1) = -3

\(A=\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\dfrac{4}{\sqrt{x}+1}< =1-\dfrac{4}{1}=-3\)

Dấu = xảy ra khi x=0

7 tháng 6 2023

\(Xét:\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ta thấy rõ ràng : \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}\) không thể : \(\ge\sqrt{x}+1\)

Do đó : \(0< \dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

DT
7 tháng 6 2023

\(\dfrac{\sqrt{x}}{\sqrt{x}+1}\left(ĐK:x\ge0\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\\ =1-\dfrac{1}{\sqrt{x}+1}\)

Ta thấy :

\(1>0,\sqrt{x}+1\ge1>0\forall x\ge0\\ =>\dfrac{1}{\sqrt{x}+1}>0\\ =>-\dfrac{1}{\sqrt{x}+1}< 0\\ =>1-\dfrac{1}{\sqrt{x}+1}< 1\\ =>\dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

12 tháng 7 2019

\(đkcđ\Leftrightarrow x\ge0\)

\(B=\frac{x+5}{\sqrt{x}+2}=\frac{x-4+9}{\sqrt{x}+2}=\frac{x-4}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}.\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}=\sqrt{x}-2+\frac{9}{\sqrt{x}+2}\)

\(=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\)

Áp dụng bđt Cô - si cho hai số dương \(\sqrt{x}+2\)và \(\frac{9}{\sqrt{x}+2}\), ta có :

\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2\sqrt{\frac{\left(\sqrt{x}+2\right).9}{\sqrt{x}+2}}\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2.3\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge6-4\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge2\)

Hay \(B_{min}=2\)\(\Leftrightarrow\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\)

\(\Rightarrow\sqrt{x}+2-\frac{9}{\sqrt{x}+2}=0\)

\(\Rightarrow\frac{\left(\sqrt{x}+2\right)^2-9}{\sqrt{x}+2}=0\)

\(\Rightarrow\left(\sqrt{x}+2\right)^2-3^2=0\)

\(\Rightarrow\left(\sqrt{x}+2-3\right)\left(\sqrt{x}+2+3\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)=0\)

Vì \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-1=0\)

\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

\(KL:B_{min}=2\Leftrightarrow x=1\)

27 tháng 11 2023

ĐKXĐ: x>=0

\(Q=\dfrac{x-8}{\sqrt{x}+1}=\dfrac{x-1-7}{\sqrt{x}+1}\)

\(=\sqrt{x}-1-\dfrac{7}{\sqrt{x}+1}\)

=\(\sqrt{x}+1-\dfrac{7}{\sqrt{x}+1}-2\)

=>\(Q>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{7}{\sqrt{x}+1}}-2=2\sqrt{7}-2\)

Dấu '=' xảy ra khi \(\left(\sqrt{x}+1\right)^2=7\)

=>\(\sqrt{x}+1=\sqrt{7}\)

=>\(\sqrt{x}=\sqrt{7}-1\)

=>\(x=8-2\sqrt{7}\)

10 tháng 12 2015

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( Với x,y >0)

Nhân cả 2 vế với 2 rồi áp dụng. Ra ngay

6 tháng 6 2016

P = ( x + 9 + 6cănx - 6cănx - 18 + 25 ) / (cănx + 3)

áp dụng bđt Côsi  suy ra min P = 4 khi x = 4