Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Nói trước bài này nghiệm xấu lắm -_-
ĐKXĐ : x > 0
Có ; \(x=2016+\sqrt{2016+\sqrt{x}}\)
\(\Leftrightarrow x+\sqrt{x}+\frac{1}{4}=2016+\sqrt{x}+2.\frac{1}{2}\sqrt{2016+\sqrt{x}}+\frac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2=\left(\sqrt{2016+\sqrt{x}}+\frac{1}{2}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\frac{1}{2}=\sqrt{2016+\sqrt{x}}+\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2016+\sqrt{x}}\)
\(\Leftrightarrow x=2016+\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}-2016=0\)
\(\Leftrightarrow x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{8065}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{8065}{4}\)
\(\Leftrightarrow\sqrt{x}-\frac{1}{2}=\pm\frac{\sqrt{8065}}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{1\pm\sqrt{8065}}{2}\)
Mà \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}=\frac{1+\sqrt{8065}}{2}\)
\(\Rightarrow x=\frac{\left(1+\sqrt{8065}\right)^2}{4}=\frac{8066+2\sqrt{8065}}{4}=\frac{4033+\sqrt{8065}}{2}\)(T/m ĐKXĐ)
Vậy \(x=\frac{4033+\sqrt{8065}}{2}\)
Lời giải:
Trong TH này ta thêm điều kiện $x$ là số nguyên dương.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x}{x+1}\)
Vậy \(\frac{x}{x+1}=\frac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)
\(\Rightarrow x\sqrt{2016-x}+2017x=(x+1)\sqrt{2017-x}+2016(x+1)\)
\(\Leftrightarrow x\sqrt{2016-x}=(x+1)\sqrt{2017-x}+2016-x\)
\(\Leftrightarrow x(\sqrt{2017-x}-\sqrt{2016-x})+\sqrt{2017-x}+2016-x=0\)
\(\Leftrightarrow \frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}+\sqrt{2017-x}+(2016-x)=0\)
Hiển nhiên ta thấy:
\(\frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}>0\)
\(\sqrt{2017-x}\geq 0\)
\(2016-x\geq 0\)
Do đó pt trên vô nghiệm
Tức là không tìm đc $x$ thỏa mãn.
Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành:
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)
\(\Rightarrow x=2018;y=2019;z=2020\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)
\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)
\(x=2018,y=2019,z=2020\)
bình phương lên rùi , chuyển 2. căn của x . căn của y sang 1 bên rùi bình phương 1 lần nữa
đặt \(\sqrt{x^2+2016}=y\left(y\ge0\right)\) =>\(2016=y^2-x^2\)
khi đó pt trên trở thành
\(x^4+y=y^2-x^2\)
<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y+1\right)=0\)
<=>\(\orbr{\begin{cases}x^2+y=0\left(loai\right)\\x^2=y-1\end{cases}}\)
với x^2=y-1 thì ta có pt \(x^2=\sqrt{x^2+2016}-1\)
<=>\(\left(\sqrt{x^2+2016}+\frac{1}{2}\right)^2=\frac{8061}{4}\)
đến đây bạn tự giải nốt nha
thêm bớt \(x^2+\frac{1}{4}\)