K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

1/

Để hàm số trên đồng biến 

Thì m-1 > 0 ⇔ m>1

2/

a,<bạn tự vẽ>

b,Theo phương trình hoành độ giao điểm

\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\)

Thay x=1 vào y=2x

y=2.1=2

Vậy tọa độ giao điểm A là (1;2)

3/ Để (d) đi qua điểm M (1;-2)

Thì x=1 và y=-2

Thay x=1 và y=-2 vào (d)

\(-2=a\cdot1+1\Leftrightarrow a=-3\)

vậy ....

4 tháng 12 2021

Bài 1:

Để hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến.

=> \(m-1>0.\)

<=> \(m>1.\)

Bài 2:

b) Xét phương trình hoành độ giao điểm của 2 hàm số trên ta có:

       \(\text{2x = -x + 3.}\)

<=> \(\text{2x + x - 3= 0.}\)

<=> \(\text{3x - 3 = 0.}\)

<=> \(x=1.\)

=>   \(y=2.\)

Vậy A(1; 2).

Bài 3:

Vì (d) đi qua điểm M(1; -2).

=> -2 = a. 1 + 1.

<=> a = -3.

Vậy a = -3. 

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

1:

a: Khi m=1 thì (1) sẽ là x^2+2x-5=0

=>\(x=-1\pm\sqrt{6}\)

b: Δ=(2m)^2-4(-2m-3)

=4m^2+8m+12

=4m^2+8m+4+8=(2m+2)^2+8>=8>0

=>Phương trình luôn có hai nghiệm phân biệt

2:

Thay x=-1 và y=2 vào (P), ta được:

a*(-1)^2=2

=>a=2

Bài 1: 

a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)

8 tháng 11 2021

Bài 4:

\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)

Câu 16: A

Câu 14: C

Câu 12: A

Bài 3: 

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

Câu 2:

1: \(y=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)x+4=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)\cdot x=\sqrt{3}+5-4=\sqrt{3}+1\)

=>\(x=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\left(\sqrt{3}+1\right)^2}{3-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)

2: \(x^2-2\left(1-m\right)x-2m-5=0\)

=>\(x^2+\left(2m-2\right)x-2m-5=0\)

a: \(\Delta=\left(2m-2\right)^2-4\left(-2m-5\right)\)

\(=4m^2-8m+4+8m+20\)

\(=4m^2+24>=24>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Câu 1:

2: Thay x=2 và y=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a-\left(-1\right)=5\\b\cdot2+a\cdot\left(-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a=5+\left(-1\right)=4\\2b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\2b=a+4=6\end{matrix}\right.\)

=>a=2 và b=3

2: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Khi tăng mẫu số thêm 4 đơn vị thì phân số đó bằng 1/3 nên ta có:

\(\dfrac{a}{b+4}=\dfrac{1}{3}\)

=>3a=b+4

=>3a-b=4(1)

Khi giảm mẫu số đi 2 đơn vị thì phân số bằng với 2/3 nên ta có:

\(\dfrac{a}{b-2}=\dfrac{2}{3}\)

=>3a=2(b-2)

=>3a=2b-4

=>3a-2b=-4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=4\\3a-2b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\3a-b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=8\\3a=b+4=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=8\end{matrix}\right.\)(nhận)

Vậy: Phân số cần tìm là \(\dfrac{4}{8}\)

9 tháng 12 2023

loading...  loading...  

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành