K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2019

a/ \(y'=x^2-mx-2\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Leftrightarrow\Delta=m^2+8< 0\) (vô lý)

Vây không tồn tại m thỏa mãn

b/ \(y=\frac{x^2-2mx-1}{x-1}\Rightarrow y'=\frac{\left(2x-2m\right)\left(x-1\right)-\left(x^2-2mx-1\right)}{\left(x-1\right)^2}\)

\(y'=\frac{x^2-2x+2m+1}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2+2m}{\left(x-1\right)^2}\)

Để hàm số đồng biến trên TXĐ

\(\Leftrightarrow y'\ge0\) \(\forall x\in D\Leftrightarrow\frac{\left(x-1\right)^2+m}{\left(x-1\right)^2}\ge0\) \(\forall x\Rightarrow m\ge0\)

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

DD
11 tháng 8 2021

\(y=-\frac{x^3}{3}+2x^2-mx+1\)

\(y'=-x^2+4x-m\)

Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).

Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).

\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).

NV
17 tháng 7 2021

\(y'=3x^2-4mx-m-1\)

Hàm đồng biến trên (0;2) khi \(\forall x\in\left(0;2\right)\) ta có:

\(y'\ge0\Leftrightarrow3x^2-4mx-m-1\ge0\)

\(\Leftrightarrow3x^2-1\ge m\left(4x+1\right)\) (1)

Do \(4x+1>0\) ; \(\forall x\in\left(0;2\right)\) nên (1) tương đương:

\(m\le\dfrac{3x^2-1}{4x+1}\Leftrightarrow m\le\min\limits_{\left(0;2\right)}\dfrac{3x^2-1}{4x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{3x^2-1}{4x+1}\) trên \(\left(0;2\right)\)

\(f'\left(x\right)=\dfrac{12x^2+6x+4}{\left(4x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(0\right)=-1\Rightarrow m\le-1\)

NV
23 tháng 10 2021

\(y=\dfrac{2x-1}{x+m}\Rightarrow y'=\dfrac{2m+1}{\left(x+m\right)^2}\)

Hàm nghịch biến trên miền xác định khi:

\(2m+1< 0\Rightarrow m< -\dfrac{1}{2}\)

15 tháng 10 2015

ta tính \(y'=3x^2-6x-m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

mà ta có \(y'=3x^2-6x-m\)>0 khi và chỉ khi \(\Delta=b^2-4ac

y'=1/3*3x^2(m-1)-(m-1)2x+1

=x^2(m-1)-x(2m-2)+1

Để hàm số đồng biến trên R thì y'>0 với mọi x

=>m-1<>0 và (2m-2)^2-4(m-1)>0

=>m<>1 và 4m^2-8m+4-4m+4>0

=>4m^2-12m+8>0 và m<>1

=>m^2-3m+2>0 và m<>1

=>m>2 hoặc m<1

\(y'=\dfrac{1}{3}\cdot3x^2-m\cdot2x+2m+3=x^2-2m\cdot x+2m+3\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x thuộc R

=>Δ=(-2m)^2-4(2m+3)<=0 và 1>0

=>4m^2-8m-12<=0 

=>m^2-2m-3<=0

=>(m-3)(m+1)<=0

=>-1<=m<=3

mà m nguyên

nên \(m\in\left\{-1;0;1;2;3\right\}\)