K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

a) P rút gọn lại là = x(x-1)

b) Để P = 2 => \(x^2\)- x -2 = 0

=> x = 2 hay x = -1

c) Để P<12 => \(x^2\) - x -12< 0

=> (x-4)(x+3) <0

=> x-4 <0<x+3

=> x<4 hay x >-3

Vậy, -3<x<4 thì P<12

d) GTNN của P = \(x^2\)- x

=  \(x^2\)- x +1/4 -1/4

= (x-1/2)\(^2\)-1/4 >= -1/4

Vậy, GTNN của x là -1/4 khi và chỉ khi x = 1/2

Nhớ like giúp mik nha bạn. Thx bạn nhìu:33

a) Ta có: \(P=\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{x\sqrt{x}-x}\)

\(=\dfrac{x\sqrt{x}+x-2-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x\left(\sqrt{x}-1\right)}{1}\)

\(=\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}+1}\cdot x\)

\(=\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\cdot x\)

\(=x^2-x\)

Câu 5: B

Câu 6: C

Câu 7: A

Câu 8: A

4:

Gọi chiều rộng là x

=>Chiều dài là 4x

=>Diện tích là 4x^2

Theo đề, ta có: (x-2)*8x=4x^2+20

=>8x^2-16x-4x^2-20=0

=>x^2-4x-5=0

=>x=5

=>S=4*5^2=100m2

Số tiền của mảnh vườn là:

100*20000000=2000000000(đồng)

25 tháng 7 2021

Bài 18 

a, Với \(a>0;a\ne1;4\)

\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b, Thay a = 9 => căn a = 3 

\(A=\dfrac{3-2}{3.3}=\dfrac{1}{9}\)

c, Ta có : \(A.B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}.\dfrac{3\sqrt{a}}{\sqrt{a}+1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}< 0\)

Vì \(\sqrt{a}+1>\sqrt{a}-2\)

\(\left\{{}\begin{matrix}\sqrt{a}+1>0\\\sqrt{a}-2< 0\end{matrix}\right.\Leftrightarrow a< 4\)

Kết hợp với đk vậy \(0< a< 4;a\ne1\)

Bài 18:

1) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

2) Thay a=9 vào B, ta được:

\(B=\dfrac{3\cdot3}{3+1}=\dfrac{9}{4}\)

25 tháng 7 2021

a, \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)ĐK : \(x>0;x\ne1\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b, \(A=\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\Rightarrow3\sqrt{x}-3=\sqrt{x}\Leftrightarrow2\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\)

c, \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=\dfrac{\sqrt{x}-1-9x}{\sqrt{x}}\)

\(=1-\dfrac{1}{\sqrt{x}}-9\sqrt{x}\)Đặt \(\sqrt{x}=t^2\left(t>0\right)\)

\(1-t-9t^2=-\left(9t^2-t-1\right)=-\left(9t^2-2.3.\dfrac{1}{6}.t+\dfrac{1}{36}-\dfrac{37}{36}\right)\)

\(=-\left(3t-\dfrac{1}{6}\right)+\dfrac{37}{36}\le\dfrac{37}{36}\)

Dấu ''='' xảy ra khi t = 1/18 => t^2 = 1/324 => \(\sqrt{x}=\dfrac{1}{324}\Rightarrow x=\dfrac{1}{104876}\)

Vậy GTLN P là 37/36 khi x = 1/104876

25 tháng 7 2021

\(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(\dfrac{\sqrt{3}-3}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{2}=\dfrac{3-\sqrt{3}-3\sqrt{3}+3}{2}=\dfrac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)

16 tháng 8 2021

\(\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\left(1\right)\\\dfrac{12}{\sqrt{2x-1}}-\dfrac{3}{y+1}=3\left(2\right)\end{matrix}\right.\)

Lấy \(\left(2\right)+\left(1\right)\) ta được:

\(\dfrac{21}{\sqrt{2x-1}}=5\\ \Leftrightarrow5\sqrt{2x-1}=21\\ \Leftrightarrow25\left(2x-1\right)=441\\ \Leftrightarrow50x-25=441\\ \Leftrightarrow50x=466\Leftrightarrow x=\dfrac{233}{25}\)

Thay x vào (1)

\(\dfrac{9}{\sqrt{2\cdot\dfrac{233}{25}-1}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{9}{\sqrt{\dfrac{441}{25}}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{9}{\dfrac{21}{5}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{15}{7}+\dfrac{3}{y+1}=2\\ \Leftrightarrow15\left(y+1\right)+21=14\left(y+1\right)\\ \Leftrightarrow15y+15+21=14y+14\\ \Leftrightarrow y=-22\)

Vậy pt có tập nghiệm \(\left(x;y\right)=\left(\dfrac{233}{25};-22\right)\)

\(\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{\sqrt{2x-1}}+\dfrac{12}{y+1}=8\\\dfrac{36}{\sqrt{2x-1}}-\dfrac{9}{y+1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{y+1}=-1\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=-21\\\dfrac{4}{\sqrt{2x-1}}=\dfrac{20}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-22\\2x-1=\dfrac{441}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{233}{25}\\y=-22\end{matrix}\right.\)

Chọn B

NV
9 tháng 4 2022

Gọi AB là dây cung qua M, H là trung điểm AB \(\Rightarrow OH\perp AB\) và \(OH\le OM=3\)

Áp dụng định lý Pitago:

\(OH^2+AH^2=OA^2=25\)

\(\Rightarrow AB=2AH=2\sqrt{25-OH^2}\)

AB nguyên khi \(25-OH^2=\dfrac{k^2}{4}\) 

\(\Rightarrow OH^2=25-\dfrac{k^2}{4}\)

\(0\le OH\le3\Rightarrow0\le OH^2\le9\)

\(\Rightarrow0\le25-\dfrac{k^2}{4}\le9\)

\(\Rightarrow64\le k^2\le100\Rightarrow8\le k\le10\)

\(\Rightarrow k=\left\{8;9;10\right\}\) có 3 giá trị nguyên

NV
9 tháng 4 2022

undefined