Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a) Phương trình đường thẳng \(\left(d\right)\) có dạng tổng quát: \(y=ax+b\).
Do \(\left(d\right)\) đi qua \(A,B\) nên giá trị hoành độ và tung độ của \(A,B\) là các cặp nghiệm của phương trình đường thẳng.
\(\Rightarrow\left\{{}\begin{matrix}-3=a+b\\1=2a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=-7\end{matrix}\right.\).
Vậy: Phương trình đường thẳng \(\left(d\right):y=4x-7\).
(b) Mình không hiểu rõ đề phần "có (1, 2)" ạ:D.
a) Gọi pt đường thẳng AB là \(y=ax+b\) \(\Rightarrow\left\{{}\begin{matrix}-1=a+b\left(1\right)\\7=5a+b\left(2\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow4a=8\Rightarrow a=2\Rightarrow b=-3\Rightarrow y=2x-3\)
b) (d) cắt đường thẳng AB tại 1 điểm trên trục tung
\(\Rightarrow\) tọa độ điểm đó là \(\left(0;-3\right)\)
\(\Rightarrow-3=2m-9\Rightarrow2m=6\Rightarrow m=3\Rightarrow\left(d\right):y=-3x-3\)
BÀI 1
để d1 và d2 // thì: m-3=-1(1) ; m khác 3 (2)
ta có: (1) <=> m=2 (3)
từ (2) và (3) => để d1//d2 thì m = 2
a: Gọi phương trình đường thẳng AB là y=ax+b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1-a=1-\left(-2\right)=3\end{matrix}\right.\)
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Leftrightarrow y=x+2\\ b,\text{PT hoành độ giao điểm: }x+2=3x-1\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=\dfrac{7}{2}\Leftrightarrow A\left(\dfrac{3}{2};\dfrac{7}{2}\right)\\ \text{Vậy }A\left(\dfrac{3}{2};\dfrac{7}{2}\right)\text{ là giao điểm}\\ c,\text{Gọi góc đó là }\alpha\\ 1>0\Leftrightarrow\alpha< 90^0\\ \tan\alpha=1\Leftrightarrow\alpha=45^0\)
la ricardomilos