K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

20 tháng 12 2022

loading...  

30 tháng 9 2021

\(3,\\ a,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\left(x>0;x\ne1;x\ne4\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\\ b,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\\ \Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)

\(c,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\\ \Leftrightarrow P=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{\left(\sqrt{3}-1\right)\left(3\sqrt{3}-3\right)}{18}\\ P=\dfrac{12-6\sqrt{3}}{18}=\dfrac{2-\sqrt{3}}{3}\)

\(d,P\in Z\Leftrightarrow3P\in Z\Leftrightarrow\dfrac{3\sqrt{x}-6}{3\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{6}{3\sqrt{x}}\in Z\\ \Leftrightarrow6⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;6\right\}\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x\in\left\{1;4;9;36\right\}\)

30 tháng 9 2021

\(4,\\ A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\\ A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\\ A=\left|x+1\right|+\left|x-1\right|\\ A=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu \("="\Leftrightarrow x=1\)

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

NV
22 tháng 7 2021

1.

Dễ dàng tìm được tọa độ 2 giao điểm, do vai trò của A, B như nhau, giả sử \(A\left(2;4\right)\) và \(B\left(-1;1\right)\)

Gọi C và D lần lượt là 2 điểm trên trục Ox có cùng hoành độ với A và B, hay \(C\left(2;0\right)\) và \(D\left(-1;0\right)\)

Khi đó ta có ABDC là hình thang vuông tại D và C, các tam giác OBD vuông tại D và tam giác OAC vuông tại C

Độ dài các cạnh: \(BD=\left|y_B\right|=1\) ; \(AC=\left|y_A\right|=4\)

\(OD=\left|x_D\right|=1\) ; \(OC=\left|x_C\right|=2\) ; \(CD=\left|x_C-x_D\right|=3\)

Ta có:

\(S_{OAB}=S_{ABDC}-\left(S_{OBD}+S_{OAC}\right)\)

\(=\dfrac{1}{2}CD.\left(AC+BD\right)-\left(\dfrac{1}{2}BD.OD+\dfrac{1}{2}AC.OC\right)\)

\(=\dfrac{1}{2}.3.\left(4+1\right)-\left(\dfrac{1}{2}.1.1+\dfrac{1}{2}.4.2\right)=3\)

undefined

NV
17 tháng 9 2021

\(\Leftrightarrow\sqrt{4x^2-4x+1}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\4x^2-4x+1=\left(3x-1\right)^2\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\5x^2-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{5}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\dfrac{2}{5}\)

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

DD
24 tháng 5 2022

a) \(\widehat{AED}=\widehat{AFD}=90^o\) nên \(E,F\) cùng nhìn \(AD\) dưới góc vuông suy ra \(AEDF\) nội tiếp. 

suy ra \(\widehat{AEF}=\widehat{ADF}\).

mà \(\widehat{ADF}=\widehat{ACD}\) (vì cùng phụ với góc \(\widehat{DAC}\))

suy ra \(\widehat{AEF}=\widehat{ACD}\Rightarrow\widehat{BEF}+\widehat{FCB}=180^o\) suy ra \(BEFC\) nội tiếp.

b) \(\Delta GBE\sim\Delta GFC\left(g.g\right)\)

suy ra \(GB.GC=GE.GF\).

\(\Delta GDE\sim\Delta GFD\left(g.g\right)\)

suy ra  \(GD^2=GE.GF\).

\(ACBH\) nội tiếp suy ra \(GB.GC=GH.GA\)

suy ra \(GD^2=GH.GA\)

\(\Rightarrow\Delta GHD\sim\Delta GDA\left(c.g.c\right)\)

\(\Rightarrow\widehat{GHD}=\widehat{GDA}=90^o\)

suy ra \(DH\) vuông góc với \(AG\)

 

\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)

=9-8m-4=-8m+5

Để phương trình có nghiệm kép thì -8m+5=0

hay m=5/8

Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)

hay x=3/2

26 tháng 5 2021

Thể tích của hình trụ là: \(V=S.h=m^2\pi h\).

Thể tích của hình nón là: \(V=\dfrac{1}{3}S.h=\dfrac{1}{3}m^2\pi h\).

Do đó độ cao trong hình trụ là \(\dfrac{1}{3}h\).