K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0

             X=0 và X=-1

11111111111111111111111111111111111111111111111111111111111111111111111111111111

12 tháng 3 2016

<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)

=> x^2+4x+4-x^2-5x-4=x^2+2x

=> -x=x^2+2x

=> x^2+3x=0

=>x*(x+3)=0

26 tháng 3 2017

\(\frac{3-x+x}{3-x}=\frac{5x\left(x+2\right)+2\left(x+2\right)\left(3-x\right)}{\left(x+2\right)^2\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{\left(5x+2\left(3-x\right)\right)\left(x+2\right)}{\left(x+2\right)^2\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{5x+2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{5x}{\left(x+2\right)\left(3-x\right)}+2\)

\(\frac{3}{3-x}-2=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)

\(\frac{3-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)

\(3-2X\left(3-x\right)=5x\)

\(3-6+2x=5x\)

chị có thể tự giải tiếp ạ

e là hs lớp 7

6 tháng 4 2017

cảm ơn e "dang long vu'' chị làm xong thấy cái j nó sai sai nhưng k biết sai chỗ nào nên muốn dò lại bài thôi cảm ơn e nha 

3 tháng 4 2017

Bạn chú ý cách viết phương trình.

Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.

\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)

\(=16\)

Phương trình đã cho trở thành

\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)

2 tháng 3 2019

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

7 tháng 6 2015

ĐKXĐ

(x+1)(x+3)\(\ne\)0

<=>x+1\(\ne\)0 và x+3\(\ne\)0

<=>x\(\ne\)-1 và x\(\ne\)-3

Phương trình : \(\frac{x}{2\left(x+3\right)}+\frac{x}{2x+2}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x}{2\left(x+3\right)}+\frac{x}{2\left(x+1\right)}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x+1}{2\left(x+1\right)\left(x+3\right)}+\frac{x+3}{2\left(x+1\right)\left(x+3\right)}=\frac{8x}{2\left(x+1\right)\left(x+3\right)}\)

=>x+1+x+3=8x

<=>x+x-8x=-1-3

<=>-6x=-4

<=>x=2/3(thỏa ĐKXĐ)

Vậy S={2/3}

 

5 tháng 3 2017

\(giải:\)

\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)

\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)

\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)

\(\Leftrightarrow\frac{12x+20}{15}=0\)

\(\Rightarrow12x+20=0\)

\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)

vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)

\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)

 \(mà\)\(x^2+10x+16>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

vậy x=4 là nghiệm của phương trình

\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)

\(\Leftrightarrow8x-16=0\)

\(\Leftrightarrow8\left(x-2\right)=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

vậy x=2 là nghiệm của phương trình

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

14 tháng 2 2017

Theo bài ra ,ta có : 

\(\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\left(ĐKXĐ:x\ne0;x\ne2;x\ne-2\right)\)

Quy đồng và khử mẫu ta được 

\(x\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x\left(x^2+2\right)\)

\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+2\right)=2x^3+4x\)

\(\Leftrightarrow x^3+2x+2x^2+4=2x^3+4x\)

\(\Leftrightarrow x^3-2x^3+2x^2+2x-4x+4=0\)

\(\Leftrightarrow-x^3+2x^2-2x+4=0\)

\(\Leftrightarrow-\left(x^3-2x^2+2x-4\right)=0\)

\(\Leftrightarrow-\left(x^2\left(x-2\right)+2\left(x-2\right)\right)=0\)

\(\Leftrightarrow-\left(\left(x-2\right)\left(x^2+2\right)\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow2-x=0\)( Vì x2 + 2 luôn luôn > 2 với mọi x ) 

\(\Leftrightarrow x=2\)(Không TMĐKXĐ) ( Loại )

Vậy S={rỗng}

Chúc bạn học tốt =))