Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)
Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)
Khi đó a,b là 2 nghiệm của pt ẩn m:
\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)
Tới đây bn tự làm tiếp.
\(A=\frac{\left(x-1\right)-5\sqrt{x-1}+6}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}=\frac{\left(\sqrt{x-1}-2\right)\cdot\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}\) Đk x\(\ne\) 1;10
\(A=\frac{\sqrt{x-1}-2}{\sqrt{x-1}}=1-\frac{2}{\sqrt{x-1}}\)
Bài 35:
b) ĐKXĐ: \(x\notin\left\{5;2\right\}\)
Ta có: \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3-\dfrac{6}{2-x}=0\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3+\dfrac{6}{x-2}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{3\left(x-5\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{6\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\)
Suy ra: \(x^2-4+3\left(x^2-7x+10\right)+6x-30=0\)
\(\Leftrightarrow x^2-4+3x^2-21x+30+6x-30=0\)
\(\Leftrightarrow4x^2-15x-4=0\)
\(\Leftrightarrow4x^2-16x+x-4=0\)
\(\Leftrightarrow4x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{4;-\dfrac{1}{4}\right\}\)
Bài 36:
a) Ta có: \(\left(3x^2-5x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(3x^2-5x+1\right)=0\)
mà \(3x^2-5x+1>0\forall x\)
nên (x-2)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: S={2;-2}
lỗi..