Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: Phương trình có tập nghiệm \(S=\left\{5;2\right\}\)
b. \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Leftrightarrow\dfrac{7\left(2x-1\right)-3\left(5x+2\right)}{21}=\dfrac{21\left(x+13\right)}{21}\)
\(\Leftrightarrow7\left(2x-1\right)-3\left(5x+2\right)=21\left(x+13\right)\)
\(\Leftrightarrow14x-7-15x-6=21x+273\)
\(\Leftrightarrow-22x=286\)
\(\Leftrightarrow x=-13\)
Vậy: Phương trình có tập nghiệm \(S=\left\{-13\right\}\)
c. \(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)
\(\Leftrightarrow\dfrac{20\left(1-2x\right)+6x}{12}=\dfrac{9\left(x-5\right)-24}{12}\)
\(\Leftrightarrow20\left(1-2x\right)+6x=9\left(x-5\right)-24\)
\(\Leftrightarrow2x-40x+6x=9x-45-24\)
\(\Leftrightarrow-41x=-69\)
\(\Leftrightarrow x=\dfrac{69}{41}\)
Vậy: Phương trình có tập nghiệm \(S=\left\{\dfrac{69}{41}\right\}\)
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
a, - \(\dfrac{1}{3}\).\(xy\).(3\(x^3\).y2 - 6\(x^2\) + y2)
= - \(x^4\).y3 + 2\(x^3\).y - \(\dfrac{1}{3}\).\(xy^3\)
b, (2\(x\) -3).(4\(x\)2 + 6\(x\) + 9)
= (2\(x\))3 - 33
= 8\(x^3\) - 27
Bài 6:
a) \(x^2-2x+4=\left(x^2-2x+1\right)+3=\left(x-1\right)^2+3>0\forall x\)
b) \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
c) \(\left(x-2\right)\left(x-4\right)+3=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2>0\forall x\)
d) \(-2x^2+5x-19=\dfrac{-4x^2+10x-38}{2}=\dfrac{-\left(4x^2-10x+6,25\right)-31,75}{2}=\dfrac{-\left(2x-2,5\right)^2-31,75}{2}< 0\forall x\)
Câu 5:
\(a^3+b^3=3ab-1\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\\ \Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\\ \Leftrightarrow\left(a+b+1\right)\left(a^2+b^2+1-ab-a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+1=0\left(vô.lí.do.a,b>0\right)\\a^2+b^2+1-ab-a-b=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\\ \Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
Vậy \(T=\left(1-2\right)^{2020}+\left(1-1\right)^{2021}=\left(-1\right)^{2020}+0=1\)
a: Xét tứ giác MBQC có
N la trung điểm chung của MQ và BC
=>MBQC là hình bình hành
b: Xet tứ giácc AMQC có
AM//QC
AM=QC
góc MAC=90 độ
=>AMQC là hình chữ nhật
c: Xét ΔBAC có
N là trung điểm của CB
NK//AB
=>K là trung điểm của AC
Xét ΔCAB có
AN,BK,CM là các trung tuyến
nên ba đường này sẽ đồng quy
=>B,H,K thẳng hàng
Bài 2:
a: =>168x+20=6x-21
=>162x=-41
hay x=-41/162
b: \(\Leftrightarrow2\left(3x-8\right)=3\left(5-x\right)\)
=>6x-16=15-3x
=>9x=31
hay x=31/9
c: \(\Leftrightarrow4\left(x^2+8x-20\right)-\left(x+4\right)\left(x+10\right)=3\left(x^2+2x-8\right)\)
\(\Leftrightarrow4x^2+32x-80-x^2-14x-40-3x^2-6x+24=0\)
=>12x-96=0
hay x=8
câu trả lời bằng hình