K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2023

`x^2 -x=12`

`<=>x^2 -x-12=0`

`<=> x^2+3x-4x-12=0`

`<=> x(x+3)-4(x+3)=0`

`<=>(x+3)(x-4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

`---`

`2x^2-3x=15-4x`

`<=> 2x^2-3x+4x=15`

`<=>2x^2 +x-15=0`

`<=>2x^2+6x-5x-15=0`

`<=> 2x(x+3)-5(x+3)=0`

`<=>(x+3)(2x-5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)

`---`

`x(x-5)=24`

`<=> x^2 -5x-24=0`

`<=>x^2+3x-8x-24=0`

`<=>x(x+3) -8(x+3)=0`

`<=>(x+3)(x-8)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)

`----`

`x(x-3)=10(x-4)`

`<=> x^2 -3x =10x -40`

`<=>x^2 -3x-10x +40=0`

`<=> x^2 -13x+40=0`

`<=>x^2-5x-8x+40=0`

`<=> x (x-5) - 8(x-5)=0`

`<=>(x-5)(x-8)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=8\end{matrix}\right.\)

5 tháng 3 2023

5. \(x^2-x=12\Leftrightarrow x^2-x-12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

6. \(2x^2-3x=15-4x\Leftrightarrow2x^2+x-15=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

7. \(x\left(x-5\right)=24\Leftrightarrow x^2-5x-24=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

8. \(x\left(x-3\right)=10\left(x-4\right)\Leftrightarrow x^2-3x=10x-40\)

\(\Leftrightarrow x^2-13x+40=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)

28 tháng 2 2021

`2x+5y=11(1)`

`2x-3y=0(2)`

Lấy (1) trừ (2)

`=>8y=11`

`<=>y=11/8`

`<=>x=(3y)/2=33/16`

a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)

22 tháng 8 2019

\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)

\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)

\(\Leftrightarrow x^2+4=4x+8\)

\(\Leftrightarrow x^2-4x-4=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)

Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)

P/S: Ko chắc

\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)

\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Rightarrow x^2+4=2x+4\)

\(\Rightarrow x^2+4-2x-4=0.\)

\(\Rightarrow x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy .............

Study well 

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+y=5\\\dfrac{3}{5}+\dfrac{2}{x-y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\\dfrac{2}{x-y}=\dfrac{12}{5}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=5\\6\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{35}{6}\\y=x-\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{35}{12}\\y=\dfrac{25}{12}\end{matrix}\right.\)

17 tháng 2 2022

uhmmm
bạn ơi
bạn làm lại giúp mình đc ko
mìnhmình lấy nhầm đề =]]]

6 tháng 7 2020

\(\hept{\begin{cases}3x-y=3\sqrt{x+y}\\3x+y=3\sqrt{x-y}\end{cases}\left(x-y;x+y\ge0\right)}\)

Đặt : \(\hept{\begin{cases}x+y=u\\x-y=v\\2x=u+v\end{cases}\left(u;v;x\ge0\right)}\)thì pt tương đương :

\(\hept{\begin{cases}u+2v=3\sqrt{u}\\v+2u=3\sqrt{v}\end{cases}}\)

\(< =>\hept{\begin{cases}u^2+4v^2+4uv=9u\\v^2+4u^2+4uv=9v\end{cases}}\)

\(< =>\hept{\begin{cases}u^2-9u+\left(4v^2+4uv\right)=0\\v^2-9v+\left(4u^2+4uv\right)=0\end{cases}}\)

Đến đây bạn giải delta và xét theo đk là xong 

\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)

\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc

\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)

\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)

\(\frac{y-1}{2}=\frac{y-0,5}{5}\)

\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)

Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc

\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)