Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: b. \(\sqrt{9x^2-6x+1}=9\)
<=> \(\sqrt{\left(3x-1\right)^2}=9\)
<=> 3x - 1 = 9
<=> 3x = 10
<=> x = \(\dfrac{10}{3}\)
Câu 2:
\(3x^2-3x-1=0(*)\)
Theo định lí Vi-ét ta có
\(\begin{cases} S=x_1+x_2=\frac{3}{3}=1\\ P=x_1.x_2=\frac{-1}{3} \end{cases} \)
Theo định lí Vi-ét đảo ta lại có:
Hai nghiệm \(x_1;x_2\) là nghiệm của phương trình: \(X^2-SX+P=0(1)\)
\(\Leftrightarrow X^2-X-\frac{1}{3}=0\)
Ta có: \(\Delta=1+\frac{1}{3}=\frac{4}{3} > 0\)
Vậy phương trình (1) có hai nghiệm phân biệt:
\(\begin{cases} X_1=\frac{3+\sqrt{\frac{4}{3}}}{6}\\ X_2=\frac{3-\sqrt{\frac{4}{3}}}{6} \end{cases} \)
\(\Leftrightarrow \begin{cases} X_1=\frac{3+\sqrt{21}}{6}\\ X_2=\frac{3-\sqrt{21}}{6} \end{cases} \)
Do đó phương trình (*) có hai nghiệm:
\(\left[\begin{array}{} \begin{cases} X_1=\frac{3+\sqrt{21}}{6}\\ X_2=\frac{3-\sqrt{21}}{6} \end{cases}\\ \begin{cases} X_1=\frac{3-\sqrt{21}}{6}\\ X_2=\frac{3+\sqrt{21}}{6} \end{cases} \end{array} \right.\)
\(\Rightarrow \left | x_1-x_2 \right |=\left | x_2-x_1 \right |\)
\(\Rightarrow \left | x_1-x_2 \right |=\left | \frac{3-\sqrt{21}-3-\sqrt{21}}{6} \right |=\left | \frac{-\sqrt{21}}{3} \right |=\frac{\sqrt{21}}{3}\)
Câu 3: \(\begin{cases} x+3y=7\sqrt{2}\\ -2x+y=0 \end{cases} \)
\(\Leftrightarrow \begin{cases} 7x=7\sqrt{2}(1)\\ y=2x \end{cases} \)
Xét phương trình (1) ta có:
\(x=\sqrt{2}\)
\(\Rightarrow y=2\sqrt{2}\)
Vậy hệ phương trình có nghiệm\((x,y)=(\sqrt{2},2\sqrt{2})\)
Câu 4:
Gọi chiều rộng của thửa ruộng là y(m)
Gọi chiều dài của thửa ruộng là x(m)
Điều kiện: x,y>0
Vì diện tích của thửa ruộng hình chữ nhật là \(10000m^2\) nên ta có phương trình:
\(x.y=10000(1) \)
Vì khi tăng chiều rộng của thửa ruộng thêm 20 m và giảm chiều dài đi 50 m thì diện tích thửa ruộng tăng thêm \(500m^2\) nên ta phương trình:
\((y+20).(x-50)=10000+500(2)\)
Từ phương trình (1) và (2) ta có hệ phương trình:
\(\begin{cases} x.y=10000\\ (y+20).(x-50)=10500 \end{cases} \)
Muộn rồi nên bạn tự giải phương trình này được nha:(
Giải phương trình trên ta nhận được nghiệm(x,y)=(200,50)
Do đó chiều rộng của thửa ruộng là 50m
chiều dài của thửa ruộng là 200m
1:
a: =12/10-7/10=5/10=1/2
b: \(=\dfrac{4}{13}-\dfrac{4}{13}+\dfrac{-5}{11}-\dfrac{6}{11}=-\dfrac{11}{11}=-1\)
2:
a: x+2/7=-11/7
=>x=-11/7-2/7=-13/7
b: (x+3)/4=-7/2
=>x+3=-14
=>x=-17
3:
ĐKXĐ: x>=0; x<>1
a: \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
b: \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>=0+1=1\)
=>\(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
mà 2>0
nên \(P=\dfrac{2}{x+\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ
2:
a: A=căn 3-1-2-căn 3=-3
b: =căn 3+căn 2-căn 3+căn 2=2*căn 2
d: =(căn 7/2+căn 5/2)*(căn 7-căn 5)=2/2=1
e: =3-căn 5+2căn 5+2-căn 5+2
=7